Published in Proceedings of the ACM Symposium on User Interface Software and Technology, 1995, forthcoming.

Social Activity

Indicators: Interface Components for

CSCW Systems

Mark S. Ackerman
Brian Starr
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717
ackerman@ics.uci.edu
http://www.ics.uci.edu/CORPS/ackerman.html
bstarr@ics.uci.edu

ABSTRACT

Knowing what social activity is occurring within and
through a Computer-Supported Cooperative Work (CSCW)
system is often very useful. This is especially true for
computer-mediated communication systems such as chat
and other synchronous applications. People will attend to
these systems more closely when they know that there is
interesting activity on them.

Interface mechanisms for indicating social activity,
however, are often ad-hoc, if present at all. This paper
argues for the importance of displaying social activity as
well as proposes a generalized mechanism for doing so.
This social activity indication mechanism is built upon a
new CSCW toolkit, the Cafe ConstructionKit, and the Cafe
ConstructionKit provides a number of important facilities
for making construction of these indicators easy and
straight-forward. Accordingly, this paper presents both the
Cafe ConstructionKit as a CSCW toolkit as well as a
mechanism for creating activity indicators.

KEYWORDS: computer-supported cooperative work,
user interfaces, social activity, awareness, visualization,
human-computer interfaces, information systems, CSCW

INTRODUCTION

Often you may want to know what the people around you
are doing. For example, when working on a large team, it
is energizing to know that people are busy working away.
Or, one might like to know when his friends are available
on a MUD, IRC, or other synchronous “chat” system. The
exact semantics of their messages or documents may be less
important than just knowing that some activity is
occurring.

In general, CSCW systems need to convey an indication of
their social world. User interfaces for groupware or CSCW
applications must therefore convey this social information,
which may vary according to the needs of the system.

While many CSCW systems are partially aware of this
requirement, particularly the need for shared representations,
the need to reflect general activity is less understood.
Additionally, implementation of this social indication is ad
hoc when present. We would like to make such social
indicators be a standard part of a CSCW application’s user
interface.

In the following sections, we argue that social indicators are
useful in CSCW applications. We base this argument on a
set of theoretical concerns from social psychology. Based
on these theoretical concerns, we argue for the utility of a
particular class of social indicator, which we call social
activity indicators. They constitute a simple, yet powerful,
mechanism for improving CSCW functionality.

We also show how easy it is to construct these social
activity indicators, given the necessary tools in the
underlying system. The generalized mechanism for
indicating social activity uses a new CSCW toolkit, the
Cafe ConstructionKit, that provides the building blocks
necessary to easily implement social activity indicators.
Accordingly, we discuss the Cafe ConstructionKit and then
the indication mechanism built upon it. We conclude the
paper with some examples of social activity indicators.

PROBLEM

Imagine yourself a member of a software engineering team
working with both individual tools as well as group tools.
You are, as usual, under extreme time pressure to make
your deadlines. Perhaps you are even working on multiple
projects with multiple teams. Consider the following
seemingly unrelated problems:

O To which applications do you give valuable screen
real estate?

0 How do you know when it’s time to really work and
when it’s time to ignore requests to work on a
specific project?

Where do you ask questions and of whom?

How do you know when there will be enough users
on a group system to bother using it?

There is a well-known problem with the adoption of
CSCW and computer-mediated communication (CMC)
systems: For any given individual, it not worth
participating unless there is already a sizable group of
people participating [14]. For communication systems and
other CSCW systems with similar characteristics, this
“critical mass” problem is often a barrier to starting up
usage [23] [24].

The problem can be generalized. It is often the case that if
use drops below a certain level, people will stop using a
CSCW system. This “threshold effect” occurs because it is
not worth even checking for activity if one believes that
little will exist. The effect can be quite sudden, and often
kills use of group communication systems. At the other
extreme, people are attracted to systems where there is a
considerable amount of activity, and this activity may
excite or motivate them. Indeed, this social effect even
exists in naturally occurring groups, as will be discussed
below.

We have repeatedly encountered this problem in our own
work. In field studies of one CSCW system, Answer
Garden, users needed to be convinced that there was
sufficient system activity by other users before they would
bother to use it themselves [1]. Cafe/Espresso, a
synchronous CSCW application that will be discussed at
length below, ground to a halt after extended use in a field
study because of this threshold effect. These experiences led
us to consider what user interface mechanisms could provide
a motivating sense of social activity on a CSCW system.

Why social indicators are important for CSCW
systems

Before discussing related technical work, it will be useful to
trace through some of the reasons that people might need
some indication of social activity in their user interface.
We draw primarily on the social psychology work on small
group interactions.

People clearly use other people’s visible activities in
framing their own goals, motivations, and actions. As
early as the 1890s, the social psychology literature had
already discussed a “social facilitation” effect. This social
facilitation effect is almost assumed within social
psychology. As a standard textbook notes:

...we may therefore conclude that under either
competitive or cooperative conditions group
members working on a common problem
communicate to one another a sense of urgency that
tends to heighten their mobilization of energy, and
thus their motivation. ([27], p. 467)

This effect has been found to be robust for face-to-face
interactions, even those where people are working side-by-
side silently. These findings are very telling: Just
knowing that others are doing some activity has a dramatic

effect.

This effect is not completely rational. Groups have been
shown to have extra-rational and powerful effects on
people’s perceptions, decisions, and actions. For example,
in a classic 1950s social psychology study, Asch showed
that many experimental subjects will actually come to
misperceive stimuli when surrounded by people reporting
different results [3]. This effect was shown to be true,
although weakened, even under conditions of anonymity
[9]. There are many other instances of this effect, ranging
from the bystander effect (i.e., an individual is much less
likely to go to the rescue if no one else does) to contagion
effects (e.g., running in a bomb scare or in a riot).

Unfortunately, the grounds for the social facilitation effect
are not well understood. (There is a noticeable lack of
theorizing in social psychology [25] [6].) Possibly, as
Olson [28] argues, humans have an implicit game-theoretic
view of the benefits and costs that occur in group
interaction. McGrath [25], on the other hand, argues that
people intrinsically need social learning and feedback.

In general, however, we can certainly say that people pay a
great deal of attention to the activities of others. As
McGrath points out:

The point to be made here is that the presence and
behavior of other people (and, in a sense, the
absence and the inactivity of other people) help to
define the meaning of situations for the individual
and can have a powerful impact on his or her
behavior, attitudes, and feelings in those situations
([25], p. 237).

We are not arguing that shared representations should be
ignored as an interface concern. Clearly shared
representations, when appropriate, are extremely important.
Hutchins’ recent work on distributed cognition (e.g., [18])
argues for the utility of shared representations. For
example, airline pilots are able to partially put aside the
details of jointly flying a plane because of their shared
representation in the dials and controls [16]. As Hutchins
points out, people will come to innovate and fit their social
processes to the representations that are available [17].

However, we are arguing that there is a range of social
indications that could be useful. Some systems may
merely need general indications of activity -- perhaps just
that activity is occurring. Most CMC systems fall into
this category. Other CSCW systems may require further
representations, particularly if the users know the
representations are being shared with others.
(Representations of general activity can themselves be a
shared representation. However, when we use the term
“shared representations” below, we will mean
representations with a greater level of detail.)

Accordingly, user interface components that show part of
this range of social indication -- social activity, shared
representations, or some other social feature -- could be
quite useful for CSCW applications. We have discussed
how powerful these social effects can be, and we would like

to use them within CSCW systems to motivate system use
and group performance.

Previous and related work

Indications of social activity were previously discussed by
Dourish and Bly [12], Beaudouin-Lafon and Karsenty [5],
and Dourish and Bellotti [11]. Each discusses their interests
in terms of “awareness.” Awareness is conceptually
similar, but not identical, to our interest in social
indication.

In Dourish and Bly’s shared-media system, snapshots of
users were provided to other users. Dourish and Bly argued
that these images provided a sense of awareness to other
users. In this sense, users could form images of other
people’s activities by directly observing them. A similar
mechanism exists in Watcher [22] and Montage [33], as
well as other synchronous audio and video systems. This
service indicates social activity to its users and appears to
be quite valuable to them. However, this particular
visualization of activity is limited to particular types of
systems, and many forms of system activity cannot be
adequately addressed through this mechanism.

Beaudouin-Lafon and Karsenty use awareness differently, to
connote the shared representation, through a shared
workspace, in their system GroupDesign. They provide the
user with a number of sharing capabilities, including being
able to see what other users are examining and identifying
the modification history of objects. Awareness for
Beaudouin-Lafon and Karsenty also echoes the general
“awareness” about shared-window system interfaces by
Lauwers and Lantz [20]. Beaudouin-Lafon and Karsenty’s
awareness, then, aggregates what we see as important
distinctions, including awareness of general activity, shared
(and detailed) representations, and system-level
requirements. It will be useful to analytically separate these
types of awareness and to consider different indicators for
each type.

Dourish and Bellotti define awareness as “an understanding
of the activities of others, which provides a context for your
own activity” ([11], p. 107). Since their interest is in
group editing facilities, they promote the shared
representations that are possible with a shared workspace.
Other possibilities for social indication are noted, but are
dismissed with the requirement that they need be explicitly
generated or are restricted to users performing specific social
roles.

We have seen in the previous theoretical overview that
interfaces can provide a variety of social indications,
ranging from general activity through shared
representations.

Figure 1 shows the various types of indicators. (Consider
Figure 1 as a tree with the root at the top; each circle is
another type of indicator.) Using this diagram, we wish to
make several points. First, all of these indicators and
awareness mechanisms are visualizations of system and user
states; hence, we consider them all visualization problems.

visualization
problems

social indicators

information

visualizations
social activity
indicators

detailed shared \
representations
various
implementations

Figure 1: Social Indicators and Visualization
User Interfaces

There has recently been substantial work in information
visualization (e.g., [21]). While social activity is a form of
information, we consider social indication to be a different,
although related, problem. Information visualizers tend to
be best for browsing or retrieving. Social indicators,
especially those denoting general activity, can be used as
alerting and control devices in the user interface, depending
on real-time or near real-time performance. CSCW
systems, especially synchronous CMC systems, do change
significantly in real-time. However, we do note that at the
extreme (e.g., process diagrams or shared information
spaces), some detailed formulations of social activity do
turn into information visualization problems.

Second, within the visualization of social settings, there are
several types of social indicators, as Figure 1 shows. An
important type indicates general social activity, as we have
been discussing. Another type consists of shared
representations, which themselves can range in the level of
detail and the type of representation (e. g., whether user
profiles or process models are included). There may be
other social indicators as well. The term “awareness” as
previously used in the literature fuzzily connotes all of
these social indicators. We use a different term, then, to
separate these concerns analytically, since using
“awareness” is now loaded in differing ways.

Finally, we note that the problem is not specific to our
system per se. We will be describing a system in a
particular CSCW toolkit, the Cafe ConstructionKit.
However, the interface mechanism could have been built in
a number of other CSCW systems, including Suite [10],
Rendezvous [15], and ConversationBuilder [19].

In summary, we have noted that providing user interface
components for indicating social activity and social
representations would be useful and powerful. We have
also traced through the “awareness” literature and noted the
various types of social indication. Having demonstrated
some usefulness in these interface components, we next

demonstrate one mechanism for constructing these
interfaces.

THE CAFE CONSTRUCTIONKIT

Our interface mechanism for social indication is constructed
in a new CSCW toolkit, the Cafe ConstructionKit. In fact,
the mechanism was constructed primarily because a specific
application in that toolkit, a synchronous chat application
called Cafe/Espresso, required it.

In order to explain our interface mechanism, we must first
present the Cafe ConstructionKit. The Cafe
ConstructionKit provides critical facilities and building
blocks for the indicator mechanism. We will then briefly
describe the Cafe/Espresso application.

The CafeCK toolkit

The Cafe ConstructionKit (CafeCK) is a CSCW toolkit for
supporting the easy construction of applications such as
information filters, locator services, digital libraries, and
other CSCW projects. It can be used to add a variety of
CMC and information components, such as information
retrieval mechanisms, email readers, bulletin boards,
synchronous talk, and socially constructed spaces, to many
applications. In short, CafeCK provides a toolkit for
sociality and information use.

To do this, CafeCK provides a set of reusable objects that
include message transport for asynchronous and
synchronous communication, parsing for a variety of semi-
structured protocols, private and public channels for
narrowcast communication, message filters, and message
retrieval by a variety of semi-structured methods. CafeCK,
based in C++, the X Window System, and the Xt toolkit,
is programmable through the Tcl programming language
[29]. Essentially, Tcl serves as “glue” between the
computational objects (Figure 2); each object exports a
number of Tcl verbs that allow it to be used by an
application writer. By selecting from the set of available
components (or by extending it) and by writing a simple
Tcl program, an application writer can create a set of
distributed processes to handle information retrieval,
information access, or electronic communications. By

configuring the objects and providing the suitable Tcl
program, any application can include the functionality of
bulletin boards, chat systems, and electronic mail filters.
Additionally, we are actively working on providing the
important construction facilities of Multi-User Discussions
[71, so that users can interactively and collectively construct
information access methods and environments on their own.

Because of this emphasis on providing CMC and
information building blocks, CafeCK can provide a range of
social functionality to CSCW applications. The
architecture is open, unlike many information retrieval
systems. It can also serve as a platform for testing various
heuristics for interactive information seeking, where users
work together to find, create, maintain, and store new
information and knowledge.

We are designing CafeCK iteratively, and we are committed
to design based on observing how people actually use the
system. We are currently on the third version of CafeCK,
based on our field studies of use. The first version showed
that it was possible to provide a flexible, distributed
construction set for interactive communications. However,
informal user studies of the first version argued for a better
command language (hence, Tcl), using a standard
synchronous protocol (hence, the use of NCSA's Data
Transfer Mechanism), user interface support for the
interactive communication objects, and careful attention to
scalability issues. The second version had a limited field
study that consisted of a single application used over 2
months in a group of 14 users. We found that using Tcl
allowed application and end-user programmers to create new
applications without needing to radically reconstruct the
CafeCK components, but we also confronted new
requirements concerning performance and on-line
maintenance issues. The current version, which addresses
the issues raised in the field test as well as adding many
new components, is under construction. The interfaces
presented here were built using the second version.

CafeCK was designed to allow the easy construction of
CSCW applications. One such application, with which we
encountered the need for social activity indicators, was

Channels Memory Access
Public External Controls
Private Short-term
Tcl/Tk Tel
Interpretor | operators
TransportEngine InformationObject
TransportMechanisms Message Object
ConstructedObject
Translators

Figure 2: Tcl as the “glue” mechanism in CafeCK

Espresso

client O\
/

Espresso
server

Espresso

listener

robot

~ >0
ﬂ@”

tty client ;
O agent

Espresso client
(user's client)

Social activity indicator
(user s SAID)

Figure 3: Espresso application architecture (sample)

Cafe/Espresso.
following section.

This application is considered in the

The Espresso application

Cafe/Espresso (Espresso) is a synchronous chat application
constructed in CafeCK. It is functionally based on an
existing system, Zephyr [8]. Figure 3 shows a sample
configuration for Espresso. X-based and tty-based clients
communicate with an Espresso server, currently using the
NCSA Data Transfer Mechanism. Also, as shown on
Figure 3, robot services can post; for example, we have one
such robot for providing weather reports. The Espresso
server broadcasts or narrowcasts the message according to
the user’s wishes.

Additional services can be put at will on the message
stream. In Figure 3, the user has placed a message filter on
the stream. The user’s client (i.e., his reader) follows the
message stream from the filter. The last service, the user’s
social activity indicator (SAiD), will be described below.
As well in the Figure, there is a listener/agent on the
stream; for example, one such listener checks for interesting
messages to archive. This merely requires adding a database
object to the pre-existing communication objects.

Users can type in messages of any length, although the
current interface makes messages of less than 20 lines more
probable. The messages can be sent to individuals,
distribution lists, or broadcast channels. New channels can
be added on an ad-hoc basis.

We built Espresso in order to examine lightweight
communication mechanisms for exchanging information,
asking questions, and receiving answers. (This is part of
sequent work on Answer Garden [1, 2].) As mentioned, we
examined Espresso usage in a two-month field study.

We hoped that Espresso would serve as an easy-to-use,
facility. If you were present, you could ask a question or
answer back. If you were not, the messages on the channel
rolled by and were forgotten by your client. Users could
ask their question, and if anyone had an answer and was
paying attention, they could answer quickly.

However, after several weeks of use, Espresso encountered a
standard CSCW problem. Espresso consumed screen real
estate, and screen space is always scarce. Users therefore
iconified Espresso. But, once Espresso was iconified, no
one could see that new messages had arrived. Once this
began, others knew that Espresso windows were iconified.
They knew they would be unlikely to get answers, and they
never bothered to ask their questions. Once there were no
questions, no one bothered to de-iconify their application
and look for new questions. Thus, the number of active
users fell below the necessary threshold, and use
plummeted.

In the Espresso application, we needed some visual
mechanism that indicated when messages arrived from
interesting people. In other words, we needed a mechanism
to add a social activity indicator, some means of knowing
that there was system activity.

Restricting the social indication problem

While many CSCW systems need some type of shared
representation, Espresso users needed only an indicator of
system activity. A shared representation of the message
content was not necessary. In fact, for large-scale use (e.g.,
hundreds of users), providing some shared representation
might have been counter-productive because of the potential
for information overload.

Therefore, we concentrated on social activity indicators. We
did this for several reasons:

e They can be generalized to many different CSCW
systems.

e Within a particular domain of interest, CMC
systems, shared representations have little meaning.
Social activity indicators are therefore more valuable
for this important class of CSCW systems.

The building blocks in the Cafe ConstructionKit permitted
us to easily construct the social activity indicators we
needed. To do so, we constructed a new service in CafeCK.

SOCIAL ACTIVITY INDICATORS

Espresso, as explained above, was vulnerable to both the
critical-mass problem and threshold effect. Espresso
required that people pay attention to the application, but
people were unwilling to pay attention unless others were
using it.

To ameliorate this problem, we devised a CafeCK service to
indicate social activity on the system. We called this
service the Social Activity Indicator/Display (SAiD). In
Figure 3, SAiD appears as a stand-alone process, with
separate windows on the user’s screen.

In general, the functionality of SAID is contained in three
subcomponents (Figure 4). Within SAiD, messages flow
through components that filter the messages, analyze the
message traffic for a variety of measures, and then draw the
activity indicators.

Before any of this can happen, however, the user must
define one or more groupings (such as channels or users) to
track and depict. Additionally, for more complex graphs,
the user can assign a prototypical message or a set of terms
to each grouping, representing topic areas of particular
interest to him.

Because of the nature of CafeCK, filtering can be either
external or internal to SAiD. We allowed this extra layer of
filtering as a convenience to the user; CafeCK’s building
block approach allows filters within any service. Figure 4
shows the filtering being done within SAiD.

After filtering, each incoming message is first examined by
SAiD’s analysis engine. Currently, analysis consists of
three steps. As messages arrive, they are matched to user-
created rules that place them within the user groupings.
These rules are based on their semi-structured fields (i.e.,
any system or user defined header field). Rules may use
field values, calculate new fields, or logically test fields.
For example, one could have a rule to watch for particular
users on particular channels:

i ncl ude- nessage
((menber ($this. From nenber-list) &&
nmenber ($t hi s. Channel, channel -list)),
groupl)

The rule syntax, like that for the CafeCK “glue” language
that binds the building blocks together, is just syntactic
sugar for Tcl interpretation. In the above rule, member-list
and channel-list have been defined as internal lists of values
or as external files. The variable “$this.From” uses
CafeCK syntax for indicating the From field of the current
message. Rules may also include calculations:

i ncl ude- message
((mnute($this.Date) >=
m nut e($Today) - 5))

SAiD’s analysis engine then calculates activity measures
for each grouping. Currently we use two simple measures,
message length and number of messages. Because SAID is
extensible in the same way as any CafeCK service, new
activity measures (or any other type of measure) can be
added to the analysis engine.

Finally, the analysis engine analyzes semantic content and
creates a normalized word count vector [4]. The semantic
relevance of each user grouping is calculated by comparing
it to the prototypical message or set of terms for that
grouping. The dot product is used as a measure of
relevance.

The result of these analyses is used to update the
corresponding activity and semantic information of each
user grouping. The update process currently assigns a
weight to previous and present activity within each
grouping, allowing one to place a premium on current
activity. This weight, like most other settings, can be set
by the user during run-time.

After analysis, SAiD then invokes its display engine.
Within the display engine, one or more display objects can
be assigned to each grouping. These display objects must
be updated in real-time, and therefore fast updating is
required. Each display object associated with a grouping is

filters
D um—
analysis display
messages > h > :
engine engine
selection . . /I\
b calculation | calculation display display display
y Vi .
attribute of activity | of relevance type #1 type #2 type #n
—— O\

Figure 4: Social Activity Indicator/Display (SAID) process

passed a vector consisting of the activity and relevance of
each user grouping. We have found that each display object
should keep little or no state, updating its display based
solely on its current state and the new vector.

CafeCK provides important facilities for constructing
SAiD. Because SAiD was built in CafeCK, SAiD required
no additional communication, message handling, message
filtering, or message parsing capabilities. The relevance
calculation and rule traversal, while built first for SAiD,
will be included as standard components within CafeCK.
We were able to prototype these components in Tcl and
then move them to C++. The display objects, however, did
require specially constructed code in Tk (Tcl’s user interface
toolkit) and [incr Tcl] [26].

The “glue” code for the SAID service is merely:
while (True)

Caf eNext Event ($t hi s) ;

Sai d_Anal ysi s($thi s, anal ysi s_vector);

Sai d_Di spl ay($t hi s, anal ysi s_vector);
}

To add a new component, one merely adds (or modifies) this
dispatch loop. Note that more complex analysis engines,
different displays, or even other social indicators can be
added easily.

Example social activity indicators

We have constructed three families of social activity
indicators. We offer these as sample visualizations for
indicating social activity.

Figure 5 shows two examples of the “simple indicator”
family. Like the xbiff tool, which notifies the user of
incoming email, this simple indicator merely registers the
presence of incoming messages. In fact, one can think of
this tool as a group-biff (or as we prefer to call it,
biff.n.friends). Most of the analysis engine’s results are not
used.

In our prototype, the simple indicator shows a bitmap of a
telephone on its cradle. A variety of options exist for this
simple indicator. The bitmap can alternate with one of the
phone ajar, the bitmap can flash, or the icon can jump
about (within a narrowly confined area). In Figure 5(a), the
bottom of the indicator shows the sender of the last
message; it is assumed this is for one channel on the
system. One can get a fair understanding of the channel
activity by watching the speed at which the icon changes;
the animation is critical to the user. Figure 5(b) shows a
similar indicator; however, this one shows the channel and
the number of messages within the last 5 minutes. We
have also constructed a similar indicator that shows images
of the message senders.

We have also constructed two more complex families of
social activity indicators. We do not doubt others are
possible. The first uses a bar chart to note the level of

system use across channels, users, message types, or other
groupings. Figures 6(a) and 6(b) show this display. (Note
that these displays are normally in color.) It is difficult
again to convey the animation in print, and the animation
is critical to the user’s perception. In these figures, channel
activity is being graphed. Thus, in Figure 6(a), there are
currently five active channels. Some time later (in this
case, 5 minutes), activity on the various channels has
changed. The display shows six active channels, and the
activity within each has also changed.

Because we felt that the user’s interest in past activity
would be less than for current activity, the length of the
bars decays over time. The decay setting (i.e., the time for
which activity is remembered) is user settable since users
and conditions vary.

Figure 6(c) is a social network diagram. It displays not
only activity by channel, but shows the semantic relevance
of the message content. Within the social network
diagram, each circle is arrayed along an arc in a polar plot.
The diameter of the circle represents the amount of group
member activity, and the distance from the circle to the
origin represents the relevance of the member. We plan to
add the calculation of group similarities to this diagram (as
in [30]); this would position the circles relative to one
another.

The display can apply a fisheye lens to either the relevance
or activity of each visible object [13]. The fisheye effect is
under the control of the user, and the introduced non-
linearity of the graph is useful for emphasizing or de-
emphasizing differences in values for groupings [31].

Each display is under the full control of the user using a
direct manipulation interface. As mentioned, the user can
set the groupings and the attributes for each grouping (e.g.,
message type or time). As well, the user can set the
threshold values for each attribute, the threshold values for
notification, magnification values, the fisheye effects, and
the display types. Resetting the fisheye value is often

(@) The indicator
displays the sender
of the last received
message

(b) The indicator displays
the channel and
number of messages
within a fixed period
of time.

Figure 5: Simple indicators (group-biff) for the “help”
channel.

[@[Z] SAID: Activity Display [@][2] SAID: Activity Display

| Close |

[@][2] SAiD: Activity Display

consult white.magic consult
@ hep 6.035 ® hep
@ login @ login

(a) Activity graph for five
channels

(b) Activity graph for system
system channels at a later time

Close | Show Options | Close |
white.magic consult white.magic
6.035 ® 6035 help
@ Seniors ® login

(c) Social network graph
for five channels

Figure 6: Various SAID displays. The groupings are normally in color.

valuable in analyzing complex or heavy system activity
without having to read the message traffic.

Informal lessons

We have informally tested our social activity indicators
using a data set consisting of 6559 messages on 14
channels. The most difficult part of examining these
indicators has been the need for naturalistic data. We were
fortunate to obtain two days of data from another chat-like
system. We also created a robot that can take a log file (or
any other source of data) and feed it into a CafeCK
application.

Because these are real data, these messages show the
characteristic temporal flows that one finds in a
synchronous communication system. There are bursts of
frantic activity, often followed by long lulls. Because of
the amount of message traffic and channels, we believe that
this data is a realistic environment for examining these
indicators.

We found:

O The simple indicators are best when the user wishes
to watch a single channel. They are easy to
comprehend and consume little screen real estate.
However, they are not sufficient for complex flows
of information or for many channels. While one can
have a bank of these indicators (perhaps each one
watching a different channel), it quickly becomes
confusing. Additionally, with our current
architecture, multiple simple indicators require
multiple SAiD processes.

O The bar charts adequately represent activity on less
than ten channels or other groupings of interest. The
simplicity seems to be key. A display using a 5x5
grid (with activity shown through color) was difficult
to interpret. While bar charts are limited in the types
of information they can convey, they are surprisingly
useful in synchronous systems.

O We believe that the social network diagrams offer the
most potential for representing complex states with
multiple indications of activity. However, these
diagrams also require a cognitive effort to learn and
interpret, perhaps limiting their usefulness with the
general population.

In general, we found that having a building-block approach
was extremely useful in constructing CSCW services. It
would have been difficult, at best, to construct SAiD
without the CafeCK message facilities.

CONCLUSION AND FUTURE WORK

We began with the premise that people wanted to know
what was going on about them, and that capability should
be reflected within interface design for CSCW applications.
In this paper, we have shown that building a generalized
capability for indicating social activity is quite possible.

Moreover, within this paper, we showed what CSCW
capabilities were required for the easy construction of such
interface mechanisms. Through the facilities of the Cafe
ConstructionKit, we were able to easily construct several
families of social activity indicators.

Many extensions to this work exist. One such extension is
to examine the interplay between shared representations and
activity indicators. We are currently designing activity
indicators and a process diagram to allow editors, reviewers,
and authors to track papers for a journal. While editors may
need a shared representation, they may prefer to restrict
authors to only activity information. Nonetheless, this
activity information might be quite valuable and useful. As
process engineering becomes even more prevalent, it will
be important to consider the interface requirements for
making these process diagrams socially usable and useful.

Additionally, we would like to examine the use of overlays
in social indicators [32]. Users could control the amount of
information in the social activity indicators by adding or
removing overlays. This may prevent information
overload, allowing us to create more complex social
activity indicators.

Acknowledgments

This project has been partially funded by grants from the
UCI Committee on Research and NASA (NRA-93-OSSA-
09). This work began with a remark in 1989 when Wendy
Mackay noted that one should show glass boxes rather than
black boxes in the interfaces of distributed systems. This
project also benefited greatly from conversations with
Jonathan Grudin, Debby Hindus, Eric Mandel, Paul
Dourish, and Lynne Markus. The other members of the
CafeCK research group, David McDonald, Andy Tipple and
Jeff Dorsz, contributed to this understanding of social
indicators. Anna Krylovesky and Iman Ozgur implemented
the simple indicator, and Jim Whitehead ran the Espresso
field study.

References
1. Ackerman, M. S. Answer Garden: A Tool for
Growing Organizational Memory. Massachusetts

Institute of Technology, Ph.D. Thesis, 1993.

2. Ackerman, M. S. Augmenting the Organizational
Memory: A Field Study of Answer Garden.
Proceedings of Conference on Computer-Supported
Cooperative Work (CSCW’94), 1994: 243-252.

3. Asch, S. E. Effects of Group Pressure upon the
Modification and Distortion of Judgments. In
Proshansky, H. and B. Seidenberg (ed). Basic Studies
in Social Psychology. Holt, Rinehart and Winston,
New York, 1965.

4. Bartschi, M. An Overview of Information Retrieval
Subjects. IEEE Computer, 1985, May 1985: 67-84.

5. Beaudouin-Lafon, M. and A. Karsenty. Transparency
and Awareness in a Real-Time Groupware System.
Proceedings of Symposium on User Interface Software
and Technology (UIST’92), 1992: 171-180.

6. Collier, G., H. L. Minton and G. Reynolds. Currents
of Thought in American Social Psychology. Oxford,
New York, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Curtis, P. and D. A. Nichols. MUDs Grow Up:
Social Virtual Reality in the Real World. Xerox
PARC, manuscript, 1993.

DellaFera, C. A., M. W. Eichin, R. S. French, D. C.
Jedlinsky, J. T. Kohl and W. E. Sommerfeld. The
Zephyr Notification Service. Proceedings of Winter
1988 Usenix Technical Conference, 1988: 213-220.

Deutsch, M. and H. B. Gerard. A Study of Normative
and Informational Social Influences upon Individual
Judgment. In Proshansky, H. and B. Seidenberg (ed).
Basic Studies in Social Psychology. Holt, Rinehart and
Winston, New York, 1965.

Dewan, P. and R. Choudhary. A High-Level and
Flexible Framework for Implementing Multiuser User
Interfaces. ACM Transactions on Information Systems,
1992, 10(4): 345-380.

Dourish, P. and V. Bellotti. Awareness and
Coordination in Shared Workspaces. Proceedings of
Conference on Computer-Supported Cooperative Work
(CSCW’92), 1992: 107-114.

Dourish, P. and S. Bly. Portholes: Supporting
Awareness in a Distributed Work Group. Proceedings
of ACM CHI’92 Conference on Human Factors in
Computing Systems, 1992: 541-547.

Furnas, G. W. Generalized Fisheye Views.
Proceedings of CHI ‘86, 1986: 16-23.

Grudin, J. Why groupware applications fail: problems
in design and evaluation. Office: Technology and
People, 1989, 4(3): 245-264.

Hill, R. D., T. Brinck, S. Rohall, J. F. Patterson and
W. Wilner. The Rendezvous Architecture and
Language for Constructing Multiuser Applications.

ACM Transactions on Computer-Human Interaction,
1994, 1(2): 81-125.

Hutchins, E. How a Cockpit Remembers Its Speeds.
Manuscript, 1991.

Hutchins, E. Organizing Work by Adaptation.
Organization Science, 1991, 2(1): 14-39.

Hutchins, E. Cognition in the Wild. MIT Press,
Cambridge, MA, 1995.

Kaplan, S. M., W. J. Tolone, D. P. Bogia and C.
Bignoli. Flexible, Active Support for Collaborative
Work with ConversationBuilder. Proceedings of
Proceedings of ACM CSCW’92 Conference on
Computer-Supported Cooperative Work, 1992: 378-
385.

Lauwers, J. C. and K. A. Lantz. Collaboration
Awareness in Support of Collaboration Transparency:

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Requirements for the Next Generation of Shared
Window Systems. Proceedings of ACM CHI’'90
Conference on Human Factors in Computing Systems,
1990: 303-311.

Mackinlay, J. D., G. G. Robertson and R. DeLine.
Developing Calendar Visualizers for the Information
Visualizer. Proceedings of User Interface Software and
Technology (UIST’94), 1994: 109-118.

Manandhar, S. Activity Server: You Can Run But
You Can’t Hide. Proceedings of Usenix Summer
Conference, 1991: 299-311.

Markus, M. L. Toward a “Critical Mass” Theory of
Interactive Media. In Fulk, J. and C. Steinfield (ed).
Organizations and Communication Technology. Sage,
Newbury Park, CA, 1990.

Markus, M. L. and T. Connolly. Why CSCW
Applications Fail: Problems in the Adoption of
Interdependent Work Tools. Proceedings of Computer
Supported Cooperative Work (CSCW’90), 1990: 371-
380.

McGrath, J. E. Groups: Interaction and Performance.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

McLennan, M. J. [incr tcl] - Object-Oriented
Programming in TCL. AT&T Bell Laboratories,
manuscript, 1994.

Newcomb, T. M., R. H. Turner and P. E. Converse.
Social Psychology. Holt, Reinhart and Winston, New
York, 1965.

Olson, M. The Logic of Collective Action. Harvard
University Press, Cambridge, MA, 1965.

Ousterhout, J. K. Tcl and the Tk Toolkit. Addison-
Wesley, Reading, MA, 1994.

Romney, A. K. and S. C. Weller. Predicting
Informant Accuracy from Patterns of Recall among
Informants. Social Networks, 1984, 6: 59-77.

Sarkar, M. and M. H. Brown. Graphical Fisheye
Views. Communications of the ACM, 1994, 37(12):
73-84.

Stone, M. C., K. Fishkin and E. A. Bier. The
Movable Filter as User Interface Tool. Proceedings of
ACM Human Factors in Computing Systems
(CHI’94), 1994: 306-312.

Tang, J. C., E. A. Isaacs and M. Rua. Supporting
Distributed Groups with a Montage of Lightweight
Interactions. Proceedings of ACM Conference on
Computer-Supported Cooperative Work (CSCW’94),
1994: 23-34.

