
Supporting Collaborative Help for Individualized Use
Jina Huh1, Mark W. Newman1,2, Mark S. Ackerman1,2

School of Information1, Department of Electrical Engineering and Computer Science2

University of Michigan
{jinah, mwnewman, ackerm}@umich.edu

ABSTRACT
In this paper, we seek to advance the research around
utilizing collaborative help for supporting individualized
use of technologies. We do this by shedding light on the
ways that users of MythTV, a highly flexible open-source
software system for home entertainment enthusiasts,
collaboratively help one another in maintaining their
individualized MythTV systems. Through an analysis of the
MythTV user community’s mailing list archive,
documentation, and wiki, along with user interviews, we
discuss how the community utilizes configuration artifacts
as proxies to easily mobilize and exchange knowledge.
While exchanging concrete artifacts such as scripts and
configuration files was seen to sometimes increase the
efficiency of knowledge transfer, it also presented several
challenges. Negotiating the transparency of configuration
artifacts, navigating the customization and appropriation
gulfs, and aligning usage trajectories all emerged as
problematic areas. We discuss design implications that
center around addressing these challenges. Our findings
provide a a useful new perspective on how to support users
in their individualized use of systems.

Author Keywords
Appropriation, configuration, individualized use,
collaborative help, tailorability, customization, pervasive
systems, MythTV

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
As computing becomes an integral part of our everyday
lives, the work of configuring an increasingly complex
environment becomes more challenging for end-users.
Many users turn to user communities to get help from other
users with similar experiences or better knowledge.
Collaborative help that builds knowledge through iterative
distillation over time allows common problems to become
more concrete and easily supported [3]. However, such
approaches tend to be most helpful for solutions to common

problems. For many problem spaces, though, while
individual problems occur less frequently, in aggregate they
occupy the largest portion of the space. Yet the barrier to
solving uncommon problems is high, since it requires one
to find suitable knowledge and modify it appropriately for
what is often an individualized problem. Accordingly, the
high effort level prohibits end-users from developing
personalized, tailored, or contextualized technology use,
obstructing a goal the HCI and CSCW fields have been
attempting to attain for many years [e.g., 12, 28].
A crucial research question, then, is how to leverage
collaborative help so as to better support individualized use
for end-users. This involves examining how to support end-
users for uncommon problems and needs.
In order to address this issue of supporting collaborative
help for individualized use, we examined the MythTV user
community. MythTV is open-source software for home
entertainment enthusiasts that allows users to record TV
shows, watch DVD, play games, and watch weather
forecasts. MythTV can be installed on a number of current
computing platforms, and the various components that
make up the system (e.g., tuner, graphics card) can be
replaced with many alternatives. Due to the highly flexible
nature of the system, the MythTV user community served
as an excellent study site for examining the challenges as
well as successes in how a community could leverage
collaborative help for individualized use. We focused on
the configuration problems that users faced, because
MythTV’s configuration was complex yet tractable. This
highlighted an important class of problems that people have
in their current computing environments.
This paper reports on our examination of the community’s
email archive, documentation, and Wiki, along with
interviews with MythTV users. We discuss how the
community was effectively utilizing configuration artifacts
such as configuration files, error messages, and scripts as a
way to efficiently exchange knowledge and collaboratively
tailor solutions for individualized use. We also observed
several challenges that the community faced in engaging
with configuration-based help, such as dealing with
transparencies of configuration artifacts, navigating the
customization and appropriation gulfs, and aligning usage
trajectories, which we will discuss at length below.
We will begin our discussion with an overview of the
background literature, followed by descriptions of the
MythTV community and our study design. We then report

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$5.00.

our major findings, followed by a discussion and design
implications.

BACKGROUND
The specific problem studied in this paper is help for
configuration. Balka and Wagner [5], in their discussion of
configurability as appropriation work, examined a wireless
call system in a hospital setting that needed to work with
devices such as intravenous pumps and electronically
equipped beds, as well as facilitate communication among
organizational units throughout the hospital. Their study
contributed to an understanding of configurability beyond a
single system and cast configurability as a challenge present
in end-users’ everyday computing environments.
With the view that the work of configuring and tailoring for
individualized use is a deeply embedded practice that end-
users need to work out in their everyday computing
environments, several studies have searched for ways to
support users’ work of individualizing technologies. This
has been studied in CSCW and HCI as tailorability,
appropriation, and customization. While there are subtle
differences among the three terms, the common goal is to
allow users to fit systems to their needs. Work in the area of
tailorability found that tailoring often became a
collaborative process between the developers and the users
[10, 14, 29]. Other researchers noted the presence of a
critical group, called variously user-designers, tinkerers, or
gardeners. These people customized and tailored software
to users’ needs [28] and shared their work with users
through macros, forms, and other routinized snippets of
code. Similarly, appropriation has also had a long history in
HCI. For example, Pipek et al [20] described end users’
collaborative efforts in making software artifacts work for
their context of use. Stevens et al [25] described
collaborative sharing practices of Eclipse IDE’s software
modified artifacts at a mid-size software development
company. Customization has also been studied as the
activities that are necessary in making a device or a system
to work in a particular environment down to the level of an
individual user [17]. These studies reveal configuration as a
social activity, and highlight the relevance of collaborative
help for supporting such activities.
Thus the other line of work upon which we draw includes
studies in collaborative help, which have investigated
technical help at a more general level. In this work, we
follow a line of HCI research into help, which sees it as
collaborative and social, with expertise being situated and
contextual. These studies include how people get help from
other people through online chat [2], question-and-answer
forums, phone support lines [11, 18], Internet resources
such as how-tos [27], and FAQs [9]. Related particularly to
the domain of open source software communities, studies
have surveyed various discourse types in voluntary peer-to-
peer help interactions [22, 23]. Our work builds and
extends on the prior work on peer-based collaborative help

as it relates to users’ configuration and tailoring practices of
computing systems.

MYTHTV AND ITS COMMUNITY
We chose the MythTV community as a study site for three
reasons: 1) Each user’s configuration of MythTV is often
distinct from others’, 2) the configuration is highly brittle
due to changing computing environments, and 3) MythTV
configurations are reasonably complex yet tractable.
Accordingly, studying the MythTV user community helps
us to gain insights designing collaborative help for
configuring and tailoring activities in computing
environments more broadly. Below we describe further
what MythTV system is, with some technical details,
followed by the typical challenges that MythTV users faced
when creating and maintaining their systems. We then
describe the MythTV community, which was the main
source of our data and analysis.

MythTV system
MythTV (mythtv.org) is an open-source software system
that allows users to perform a variety of tasks, such as
record TV shows to their computers, play games, check
weather, browse the Internet, watch streaming online
videos, rip DVDs, and listen to music. The system can be
installed on Linux, Mac, and Windows platforms.
Alternatively, MythTV software can come in packaged
versions where the operating system and the MythTV
system are bundled so that users do not need to separately
install MythTV. MythTV consists of a frontend, which is in
charge of the user interface, and a backend, which deals
with the database that contains recorded content. A given
MythTV system can consist of multiple frontends and
backends, and the frontend and backend do not have to be
on the same machine. Each user needs to configure his own
Mythbox(es) –the machine(s) running the MythTV system
– by choosing a platform, graphics card, amount of RAM,
CPU, tuner card(s), remote control, and monitor(s).
Environmental factors such as which country the user lives
in, whether the user is using a cable service or over-the-air
service, and whether she is subscribed to a standard or high
definition TV service also affect the configuration of one’s
MythTV system. Considering all the possible combinations
of the above system components, each user’s MythTV
configuration is often unique or at least very uncommon.

MythTV community
Members of the MythTV community receive information
and communicate through several channels; most notably
the official website, mailing lists, IRC, the wiki, and
forums. These communication channels mainly exist for
knowledge sharing as well as maintaining and developing
MythTV as an open-source project. The wiki is used for
growing solutions about individualized problems and how-
tos about various appropriations of MythTV. On the other
hand, the MythTV documentation is primarily developed by
the developers and used to document official installation
procedures.

Because we wanted to learn about the MythTV
community’s current help practices as well as any
challenges that arise, we focused on examining the archive
of the mythtv-users mailing list (mythtv-users@mythtv.
org), where most of the help interactions among users were
happening. There were other small unofficial forums and
websites, but the activity level in those places was
substantially smaller that that of the mythtv-users list. To
give a brief sense of the activity level of the list, it started in
February 2003 with 785 posts in the first month and
reached a maximum of 8082 in March 2004. Since then
(until January of 2010) it has steadily been declining with
an average number posting of 3,813 per month since the
peak. There were 559 posters for December 2009 with a
total of 3,293 posts.
For July 2006 (which will be analyzed at length below), due
to a prevalence of self-disclosure in mailing list posts it was
possible to infer that the members who spoke out on the
users’ mailing list were largely in their late 20s to 30s and
were males working in technology industries or in staff jobs
at broadcasting companies. Some of them came to the
community to learn about Linux, some wanted to save
money, and some came in for a hobby. Most were US
residents, but there were a considerable number of
Australians and British as well. We also observed a few
users from India, South Africa, Germany, and Japan.

Membership
The formal member roles in the MythTV community
consist of developers and users. Developers have their own
mailing list (mythtv-dev@mythtv.org), but they often listen
in on conversations in the users’ mailing list to either
update the progress of MythTV development (e.g., letting
users know whether certain features will be in the next
release) or to participate in discussions of whether certain
features are worth putting into the development pipeline.
Rarely do they offer technical help, which is done largely
by experienced users. One of the interviewees told us that
the community implicitly agrees that developers should
spend their time on developing MythTV and users should
contribute back by providing help for newer members and
documenting solutions. The community welcomes
newcomers, and often kindly points to the archived
solutions when newbie questions are asked.

DATA AND METHOD
The total number of email messages in our data set were
288,983. We analyzed approximately 4000 messages, 3273
of which were from July 2006. Our sampling rationale was
based on Herring’s guideline for computer-mediated
discourse analysis (CMDA) [1], which encourages the use
of motivated sampling driven by research questions over
random sampling that sacrifices context. Because our
research questions involved how the community helps
individualized use of MythTV, we largely examined
periods where MythTV was stable enough for users to
further tailor the system to their own use. To identify such

periods, we informally reviewed message threads at the
beginning and end of the archive as well as subject lines
throughout the archive. This helped us to get a sense of the
community’s conversation changes over time. Based on this
review, we decided to focus on July 2006, which offered a
suitably stable but active period.
In our analysis, we looked for emerging themes, which
were iteratively tested with more data as we advanced our
analysis. Once the initial analysis was over, we went over
the coding together, probing for any remaining questions.
We then went back to the data and continued to question
the themes that emerged, looking for any exceptions or
hidden meanings that may have been overlooked.
In order to validate our findings, we contacted recent
posters as well as those who were registered on the
MythTV wiki. We conducted a total of 12 interviews, three
by phone in 30 to 60 minute semi-structured interviews, and
nine by email where the interviewee and the first author
iteratively sent emails back and forth for further questions
and clarifications. The interviewees were asked to describe
their history of using MythTV, the kinds of help that they
received from the community, any breakdowns in getting
help, their use of the wiki, any challenges in maintaining
their MythTV over time, and what they thought about what
we had observed to that point about the community.
The following three sections go through our findings from
the study. The next section introduces frequent problems
that the members experienced and how community
members helped one another to maintain their MythTV
systems. In the section that follows, we discuss how the
help is rooted in configuration artifacts, which is made
possible by the innate flexibility of the MythTV system.
The final findings section describes various challenges that
the community has had to struggle through in order to
support individualized use.

PROVIDING HELP
In this section we briefly survey general collaborative help
interactions observed from the community. These largely
echo observations reported in previous work, most notably
work on help in open source software communities [22, 23]
and are presented here to establish a backdrop for our
subsequent discussion of configuration-specific help. First,
we characterize the types of individualized problems to
which MythTV users often had a hard time finding
solutions.

Problems in individualized use
The fact that MythTV can support a wide range of
individualized uses creates many challenges in solving
technical problems. Beyond general troubleshooting
problems, the most widespread problem we observed in the
individualized use of MythTV was dealing with
compatibility issues among hardware and software
components. During the installation phase, finding the right
set of hardware and software components such as tuner

cards, graphic cards, CPU, operating system, drivers, and
patches, all of which need to be compatible, is a challenge.
Accordingly, successfully installing MythTV can take
anywhere from a day to several months. Also, adding new
features, upgrading components, or replacing parts of the
system can break the system if there are incompatibilities
among the replaced or outdated parts and the existing
configuration. Users also encounter individualized
problems through external reasons such as power outages,
errors in the listing service messing up channel listings, and
problems from moving across country. Because most
MythTV users are US residents, users from other countries
often suffer from having to independently develop region-
specific resources.
In our observation, it was clear that a large number of
problems from individualized use of MythTV described
above were not solvable through official archived solutions
such as documentation and FAQs. The community thus
developed several standard help interactions on the mailing
list similar to what Singh and Twidale observed in open
source software communities [22, 23]. In addition, the
MythTV community established a wiki to try to capture
solutions to common problems related to individualized
use. As we will discuss later, though, the usefulness of the
wiki was limited.

Collaborative help interactions for individualized use
The challenges of contextualization has been extensively
discussed in prior work on organizational memory [1].
When askers inquired for help on the mailing list, the
context that makes up an individualized use – for example,
hardware and software configurations, family members’ use
of MythTV, or geographical constraints – and the processes
by which the problem occurred were often implicit. Thus
the asker and the helpers had to iteratively give feedback,
requesting any important information that may have been
missing. Also, the implicit rule of the mailing list was that
the asker would report back what worked and did not work,
although this was not always done. The iterative interaction
between members mostly consisted of requesting and
providing diagnostic evidence, e.g., error messages,
configuration files, query results, symptom descriptions,
and data on results from tests. Using such evidence helped
the community to detect the user’s system configuration
and their problem at hand, facilitating helpers in tailoring
suggestions to the asker’s particular situation rather than
giving general advice.
Critiquing has been discussed as essential for giving
tailored help [8]. Here, it was also a useful way for the
helpers to give advice and solutions tailored for the asker’s
specific situation. In a critique, an experienced user might
point out problems with the configuration that a user
provided in their query; these problems may or may not
have anything to do with the problem at hand. In these
critiques, there was no defined set of “right” solutions, and

each critique was tailored and tweaked for particular
individuals.

CONFIGURATION-BASED HELP
Past work has briefly mentioned social sharing of
configuration artifacts in the context of component-based
software development [25]. Configuration artifacts in the
MythTV user community played a novel role in facilitating
collaborative help for individualized use. Due to the nature
of MythTV, help was often based in the specific knowledge
artifacts that defined one’s configuration. Similar to [4]’s
discussion of knowledge artifacts, knowledge in the
MythTV user community was frequently shared in the form
of concrete configuration artifacts, which here took the
form of settings files, logs, scripts, error messages, and the
outputs of certain diagnostic tools. Just as Nardi and Miller
saw spreadsheets as “cognitive artifacts” that provided a
point of cognitive contact that mediated cooperative work
among spreedsheet users [16], configuration artifacts in the
MythTV community can be seen as proxies that could
transfer one’s contextualized knowledge about a problem
and the system setup in a simplified form. Unlike
communicative artifacts discussed in prior work, however,
some of the configuration artifacts in the MythTV user
community were executable, providing “pluggable”
solutions for users’ problems while also serving as
boundary objects for communicative purposes. While this
made certain help interactions considerably more efficient,
it also presented a new set of challenges. Since each user’s
configuration was different, a configuration-based solution
often did not easily transfer from one user to another, or
from one situation to another. Therefore, reusing the
knowledge in a configuration artifact was often tricky, and
a significant amount of translation work could be necessary
to utilize others’ configuration artifacts.
The notion of transparency—the ability of systems or parts
of a systems to reveal their contents for inspection and
modification—has been extensively discussed in the
software engineering literature. “White-box reuse” [19]
refers to reusing software artifacts through modification for
new project requirements. On the other hand, “black-box
reuse” [6, 15] allows software components to be reused “as
is,” without modification (or with only the customization of
parameters to allow for limited flexibility).
In the next several paragraphs, we discuss the work of
adjusting the transparency of configuration artifacts as a
way of illustrating how configuration artifacts acted as
proxies in sharing knowledge. Specifically, we discuss
examples for two cases of adjusted transparencies: black-
box configurations and white-box configurations. Most
importantly, we discuss how the transparency of a
configuration artifact was often undetermined and would
need to change as the help interaction unfolded.
Black-boxed configurations. The ideal situation in sharing
configuration artifacts was when they were in the form of
scripts, code, or files that had the ability to be plugged in

and/or executed by others with minor modifications. This
was especially useful in adding a feature, adding a patch for
a bug, fixing configurations, and copying recording profiles
and other configurations from users who succeeded in
accomplishing a setup. In the following example, Phil
volunteered to share a perl script file he developed that
could be used with MythStream (an optional feature to
watch streamed online media on MythTV) to get on-
demand video content from ABC Australia. Phil gave a
brief introduction on what the script could do, as well as
detailed instructions on what to install and where to put the
script:
Aussies, I've written a couple of harvesters that can
be used with MythStream to get on demand video
content from ABC Australia. [...] They both use the
perl module LWP::Simple so you'll need to make sure
that's installed. Put them in your MythStream parser
directory (in my case that's
/home/MythTV/.MythTV/mythstream/parsers) and make
them executable. Then add these lines to your
streams.res file: [code lines omitted] Hope someone
finds these useful. I find it great for getting news
on demand. (ML: Jul 1, 2006, Phil)

No modification was supposedly necessary for other people
to make the script to work as it did with Phil’s Mythbox.
White-boxed configurations. Providing help through
sharing black-boxed configurations, however, breaks down
when a configuration artifact fails to work for an
individualized setting. For instance, UK residents who want
to get content from the BBC through MythStream would
have to open up Phil’s script to be studied, understood, and
modified.
In the following example, Hugh needed to understand one
of his configuration artifacts, the xorg.conf file. Part of
what a xorg.conf file does is manage configurations of
advanced input devices and output to multiple monitors.
Even though xorg.conf is part of the XWindows system and
not MythTV, the MythTV official documentation provides
a modified xorg.conf that allows using MythTV with two
TV monitors. However, Hugh wanted to use a TV for
MythTV and a CRT monitor for regular computing.
Accordingly, he needed to modify the xorg.conf distributed
in the official documentation, but had hard time making it
work for his setup:
xorg.conf file [in the guide] is configured for TV
out only and does not provide for a usable
CRT/Monitor to do normal computing. I have tried
modifying the xorg file using Jarrod’s initial
information and adding a second monitor, device and
screen, without success. After several hours of
experimentation I need some help/direction. (ML: Jul
7, 2006, Hugh)

Understanding and modifying the revealed information was
a big challenge. Luckily, Goh, having had a similar
experience, was able to help Hugh by walking through what
he did to modify xorg.conf in setting up two screens each
for computing and for watching MythTV, and referred to
his resulting xorg.conf:

I've done something similar. Hopefully my experience
will help you. […] Here's the process I followed to
get this configuration to work:
[…] - Tweaked Jarod's example xorg.conf for the PVR-
350 to fit my configuration (it became
xorg.conf.tvout);
- Copied xorg.conf.tvout to /etc/X11/xorg.conf […]
- Merged xorg.conf.lcd and xorg.conf.tvout into
xorg.conf.twinhead;
- This step required changing all instances of
Screen0 in xorg.conf.tvout to Screen1.
[…] (Another online reference mentioned the need to
add a "Load xtrap" line to xorg.conf to allow the
mouse to traverse both screens, but I didn't find
that necessary.)
My xorg.conf.twinhead file is included below. [the
code of the script included in the message omitted]
(ML: Jul 8, 2006, Goh)

As illustrated in the example above, a black-box
configuration often needed to become transparent in order
to make it work for an individualized use. The challenges
lay in where to make it transparent, and how to deal with
the information that was revealed through the process of
converting a black-box into a white-box, or “white-boxing”.
Configurations of undetermined transparency. For the
most part, MythTV configuration artifacts in fact do not
have determined transparencies of their own (they are all
available for inspection with a text editor, for example).
Rather, their effective transparencies are negotiated in use.
Phil’s perl script was technically white, but was shared with
others as black. Hugh’s xorg.conf was treated as black by
the official documentation, but had to become white in
order to work for Hugh’s needs. One of the biggest
challenges in configuration-based help was this process of
black-boxing artifacts, then re-opening (white-boxing) and
closing them again to be shared as black-boxed
configurations for other potential users.
Furthermore, the critical problem in configuration-based
help was not simply deciding whether to make
configuration information black or white. Determining
which part of the shared artifact and what other parts of the
system’s configuration needed to be transparent was
critical. Avenard had trouble making his Mythbox
recognize hardware devices in the same order each time he
booted the system. One helper referred Avenard to
documentation for udev rules (a Linux configuration
subsystem that manages attached devices) and a previous
mailing list thread that described how to set up the udev
configuration to fix the problem. This udev configuration
information offered in the previous thread could ostensibly
be used as it was. However, for Avenard, following the
instructions did not help. In order to diagnose his problem,
he wanted to know more about which driver was actually
handling his remote control device, which was information
beyond what was described in the archived thread. He did
not need to understand all of the udev rules—just knowing
how to change a certain line of the udev rules file was
enough for him:
After reading a lot about udev, and trying a few
different configurations, I've been unable to get it
to work as I wanted. I guess my problems come from

that I do not know which driver is actually handling
the IR interface... which makes it hard to guess the
correct line in the udev rules. (ML: Jul 3, 2006,
Avenard)

Notice the last comment about finding the correct line to fix
in the udev rules. This nicely illustrates how the
transparency of the udev rule needed to be componentized.
That is, MythTV users often needed only some part of the
configuration artifact to become transparent, not all. Also in
needing to look at the driver that handled the infrared
interface in his system, Avenard again did not need
transparency of his whole system, but only enough of it to
get his problem fixed.
In addition to the problem of adopting someone else’s
configurations as a proxy for their knowledge,
configurations of different members, at any level of
transparency, were also compared with one another to find
similarities and differences so as to diagnose problems, play
as benchmarks for performance tuning, or to prevent
problems in the future. Configuration artifacts were used in
different ways as part of the help interaction—as a reusable
and modifiable object and a proxy for diagnosis and
knowledge building through comparisons.

CHALLENGES IN SUPPORTING INDIVIDUALIZED USE
In this section, we discuss further how the process of help
materials being generated on the mailing list and wiki
encountered challenges. We focus on three challenges:
identifying suitable solutions for individualized use, the
contextualizing problems during help interactions, and
maintaining solutions over the long-term.

Identifying suitable solutions for individualized use
MythTV is a complex multi-component system where each
user’s system is different from other individuals’ systems,
making it difficult to construct one-size-fits-all solutions.
Existing solutions from the documentation, FAQs, the
mailing list archive, MythTV wiki, and searching on the
Internet would often have to be modified to fit with
individualized MythTV systems. However, finding an
appropriate solution (or set) to start with and adjusting that
solution to fit one’s individualized settings often requires a
good amount of experience and expertise.
This could be a challenge for inexperienced users and
represents an example of what Won et al [33] called the
“customization gulf.” Not only did it require knowing how
and where to modify, but sometimes required figuring out
one’s own configuration information. The following
example illustrates a user, Graeme, who had hard time
using a set of instructions because the instructions did not
work on his particular setup. Moreover, he did not even
know how to bring up the specific information about his
system configuration to even know which instructions to
follow.
Graeme wanted to add an outdated tuner card, and he found
instructions from the linuxtv wiki documentation on how to
install the card in his Mythbox. When the instructions did

not work, he assumed that it was because of the built-in
modules in his kernel. However, he did not know how to
check whether his assumption was true:
It [the documentation] says for all devices I must
modprobe [a program for loading modules to the
kernel] i2c-core, crc32, firmware_class, dvb-core and
dvb-pll. This works for all but crc32 and
firmware_class. I understand that this could mean
they are built into my kernel, but I don't know how
to check that. I am running Fedora Core 4 with kernel
2.6.16-1.2115_FC4 (ML: Jul 21, 2006, Graeme)

Additionally, the vague instructions confused Graeme in
terms of whether he needed to load all firmware or a
specific one that was particular to the frontend information
of his tuner, for which, again, he did not know how to bring
up the information:
This is confusing, because I'm not sure if I should
load all of these [modules] or just the ones specific
to my frontend/demodulator. I don't know which
frontend/demodulator I have.

Then a helper taught Graeme how to get information on his
built-in kernel modules as well as how to check the
frontend/demodulator information—it often could be found
on the card itself, or by running a command called dmesg.
When Graeme checked, he did have the correct module
built in to his kernel, but not the firmware_class, making it
confusing why loading the module did not work for him.
Also, he ended up taking a look at the card itself, only to
find out that the frontend/demodulator information was
obscured:
I opened up the usb box, there is a conexant chip in
there that starts with cx22. The rest of the numbers
are obscured with heat sink compound.

Furthermore, the instructions directed him to use a
firmware that clearly would have a compatibility problem:
The linuxtv site advises me to use the Philips
firmware file, but as I don't have any Philips chips,
this must be wrong, no?

Graeme’s case portrayed how challenging it can be to select
and modify solutions that will work for one’s specific
configuration. Inability to understand one’s own
configuration settings, identifying unexpected constraints,
and knowing the boundaries of how far the instructions
could be applied to work in different configuration settings
were clearly problems for inexperienced users.

Contextualizing problems during help interactions
Contextualization has long been discussed as a challenge in
reusing information from knowledge repositories [1]. The
mailing archive and the wiki of the MythTV user
community were not the exceptions. Because MythTV
configurations could be complex, those asking for help
often had to choose what information to present about error
messages, system configuration, and history of how their
system changed over time. A MythTV wiki page on
mailing list etiquette attempts to provide askers with
guidance:
Which MythTV version are you using? Please state
whether you are using version 0.18, version 0.18.1,
0.19, 0.20, etc.

However, much of the page’s instructions are ambiguous
and rely on the user’s discretion:
If your hardware or config details are unusual or
noteworthy and you suspect that information may be
pertinent, include it.
Include any relevant log file information like the
output from mythbackend, output from mythfrontend,
output from /var/log/messages, error message[s]
during compile. NOTE: Only include the relevant
information. It's okay to trim mundane stuff out of
logfiles.

These instructions suggest askers to provide information
that they “suspect” might be helpful or pertinent, which are
relative concepts that can result in varying outcomes
depending on who is reporting the problem.
As in the example below, users’ contextualizing was often
challenged because of mismatched assumptions among the
askers and helpers. Vamshi, who attempted to install
MythTV in India, had hard time playing live TV. He
assumed that this was at least partially due to him using a
TV listings grabber for UK residents because the grabber
for Indian residents was not yet available. Accordingly, the
only contextual information he provided for his
configuration was that he was using the grabber for UK
residents. He also attached the error messages that he
received when trying to populate the MythTV database. To
this, different helpers solicited additional information
depending on their beliefs about the cause of his problem:
Where did the messages you posted come from? Which
log file? They don't look like errors from
mythfilldatabase, they look like errors from
mythbackend. (ML: Jul 3, 2006, Phil)

While this helper focused on the connection between the
frontend and the backend, another helper asked for
configuration information on the capturing component:
What capture card are you using? What channels are
you expecting to receive, and do you have frequency
information for them? MythTV does need good data in
the channel database and watchTV can be unpredictable
if some channels are configured incorrectly. Maybe
you can configure your channels manually? (ML: Jul 3,
2006, Watkin)

This thread portrayed a typical challenge in queries:
Despite the asker’s trying his best to conform to the rules of
etiquette, contextualization could require substantial
dialogue between those helpers with misaligned
assumptions to get to the context that they needed. This
alignment work of assumptions, knowledge, and
anticipation among members was a crucial challenge for
sharing knowledge, as will be further discussed in the
Discussion section.

Maintaining community knowledge over the long-term
Unlike the formal documentation and FAQs, the MythTV
wiki was open to revision and inclusion of instructions by
members of the user community. However, when users
attempted to use these community-maintained instructions,
two main challenges emerged: the obsolescence of
solutions and missing context about solutions.
Obsolescence of solutions. Obsolescence of information
has been shown to be a challenge to the viability of Wikis

[21], and this challenge was observed in our study as well.
Once a user posts a solution to the MythTV wiki, due to the
collaborative characteristics of wikis, the community
officially maintains the solution rather than the original
poster, creating interesting coordination problems in
maintaining the solution. Solutions may not be sufficiently
managed over time due to the ambiguous ownership of the
solution, often giving the wiki the reputation of being
outdated for topics that are not popular.
As a result, the MythTV wiki was often approached with a
perception that it might be outdated. Not knowing how well
updated a MythTV wiki page was one of the reasons the
users turned to the mailing list:
I've just purchased a TV Tuner card (Yuan SmartVDO
EzDVD MPG150/160/600). The board is labelled MPG600GR
REV 1.1. I'm aware that on the ivtv wiki page it says
that this board is not supported due to the Phillips
SAA7174HL chip but I don't know how current that info
is. Has any body had any experience with this board
or chip? (ML: Nov, 16, 2004, PoorH)

On the MythTV wiki, a page can become obsolete not
merely because no one cares about the page, but also
because the page now has to serve the community as a
whole. An author cannot fix the page to note how well the
solution works on her current updated system because
information up on the wiki that is outdated for her can still
be relevant to others. The author only knows her situation
and not others’:
It [the wiki] tends to get updated by those who tried
to use it, found it was wrong, found out how to do
what they wanted to do, and went back and fixed the
wiki. Unfortunately those people (people like me) are
unable to remove the cruft because they do not know
if it is still valid for some people or not. (I:
Peale)

Comments and warnings on the wiki seemed to play an
important role in validating information, but if too prevalent
they also created trust issues for using the information.
Missing context-information about solutions. During the
knowledge distillation process of moving information from
the mailing list to the wiki, the solution becomes
decontextualized. Information about how the solution
emerged – what the original problem was that started the
thread, how much interest the problem received, what
detours were made in coming to the final solution, or at
what point of time in the community’s conversation the
problem emerged – becomes lost. As a result, users may
consider solutions on the wiki to be less useful than
solutions discussed over the mailing list. During an
interview, Kyle described how the discussions that revolve
around coming to a particular solution were an important
context that should not be abandoned when a thread gets
distilled into the wiki:
A forum (the mailing list) is just different, people
are going back and forth, presenting arguments, etc.
With a wiki, you can't see which parts were debated
over, which were just stuck there, and who stuck
them. (I: Kyle)

Another piece of contextual information that gets lost is
who initiated the solution, which would influence the
credibility of the information. Kyle again said:
On the forum, if the owner of the project says
something, you think about it differently than if you
read it on the wiki. (I: Kyle)

Of course, the challenge is maintaining the intricate balance
between revealing necessary information and preventing
information overload.
In summary, we observed several challenges that are
widespread in the MythTV community for getting
collaborative help on individualized use: the set of skills
required for modifying solutions to work for one’s
configuration setting that not all users possessed;
ambiguities about which information should be put forward
for contextualizing problems; rapid obsolescence of
solutions described on the wiki; and problematic de-
contextualization of the distilled knowledge on the wiki.
Next, we discuss what our findings mean, and how we can
leverage collaborative help for individualized use.

DISCUSSION
In this section, we discuss three challenges that emerge
from our findings: dealing with transparencies, navigating
customization and appropriation gulfs, and aligning usage
trajectories. We believe these issues are present in many
systems with complex configurations. We discuss each in
turn, followed by our design implications.

Dealing with transparencies
For MythTV, reusing black-boxed configurations was the
easiest way to get help from others. However, as
mentioned, these artifacts often required intense labor to
understand how to reuse them and to then modify the
artifact to work for the specific problem.
As discussed earlier, the transparency of a configuration
artifact often switched between black and white for
configuration-based help depending on whether the artifact
could be used as it was or not. In addition, the configuration
artifact in question needed to be understood within the
overall configuration, which was often black-boxed. While
in some cases white-boxing a configuration was not a
difficult task, in other cases white-boxing was a skill to
learn, as with Avenard who wanted to understand which
driver was in charge of the IR receivers. The difficulty was
in knowing which part of a configuration artifact should be
opened up and how to utilize that information. As seen in
Avenard’s case of fixing his udev rules, the transparency of
a configuration artifact had to be compartmentalized,
opened up just enough to solve the problem at hand.
For MythTV, accordingly, customizing parameters of a
black-boxed component was not always sufficient for
dealing with the innumerable sets of configuration
differences among the members’ systems. More than mere
parameterization was required to reuse a solution or a
configuration artifact and in collectively diagnosing

problems. At the same time, the complete transparency
offered in white-box reuse was unnecessary and
burdensome.
MythTV users, then, need some form of gray-box
reusability [30]. For MythTV and probably other systems,
configuration information is shared with great transparency,
no transparency, and partial transparency, depending on the
context of the problem. Gray-boxing would be a more
systematic way of allowing users to simultaneously ignore
details when possible, open up a configuration artifact
completely if necessary, and deal with parts as required.
While providing such facilities will be challenging,
supporting graybox reusability would facilitate sharing and
learning how to modify reusable objects solutions.

Navigating the customization and appropriation gulfs
For many MythTV users trying to solve individualized
problems, finding the right solution to adopt and knowing
how to go about appropriating it are technically challenging
tasks. As discussed earlier, Won, et al. [33] referred to
MacLean, et al.’s work [13] in describing the customization
gulf, i.e., the considerable effort and skills necessary for
moving beyond simple parameterization. Similarly, a
significant amount of experience and skill was required in
order for MythTV users to go beyond the simple tweaking
of solutions in the official documentations and FAQs and in
reusing the solutions available in the wiki and on the Web.
For example, Hugh, who had to modify xorg.conf to make
it work for his particular needs, needed someone to guide
him through the “gulf” in modifying his configuration file.
As Hugh’s example showed, the MythTV users often had to
understand what we call the appropriability of a solution,
knowing which existing solutions can work without
modification and knowing whether a solution could be
appropriated for an individualized use. We call this problem
the appropriation gulf (of solutions).
This gulf was widened in the MythTV community, due to
the wiki missing context about how up-to-date the solution
might be, for whom the solution did not work, for whom
the solution worked best, and in what circumstances the
solution was originally created (all of which are generally
better described in the mailing list archive than in the wiki).
It was difficult for a user to see the decontextualized
solution and then decide how he might adopt the solution
for his particular setting. (This is when the user turned to
the mailing list to get help, because it is hard to figure out
the appropriability of potential solutions by oneself.) Thus
an asker with a seemingly unique problem may not initially
realize how he could utilize a solution for other problems.
Mailing lists or forums are better for doing this in that they
allow people to creatively repurpose solutions for
unanticipated problems. For example, one user posted on
the mailing list the need for creating a quiet living room by
moving his backend server to another room, meaning that
he had to deal with the wireless (or wired) connections

between the frontend and the backend. A second user
replied that he used MythTV with his laptop through a
wireless network. This helper was able to give advice about
the resolution of movie files given the constraints of the
wireless network. A third user posted a more advanced way
of utilizing a wireless network for using MythTV with his
truck. He was sending video files every night to the truck
from his basement, a setup that could be utilized for other
circumstances such as using laptops or creating quiet
rooms. The asker did not initially ask about MythTV’s use
in laptops or trucks to solve his quiet living room problem.
Rather, the helpers who understood the key technical
challenges in making a quiet room were able to bring in
appropriable solutions for that particular problem.
The customization and appropriation gulfs create a barrier
for a user when attempting to move beyond appropriating
official or “safe” solutions and to find potential solutions
for his or her individualized use. Helping users understand
what potential solutions might be appropriable and helping
users then know how to appropriate those solutions would
be useful. While we only have the example of MythTV in
this paper, we believe this form of help is likely to be useful
for systems that allow for flexible configuration and
tailoring activities.

Aligning usage trajectories
Maintaining one’s MythTV was not just individual work.
As we have seen, it often involved understanding other
users’ experiences to solve a current problem or determine
future plans.
Not all users were interested in changing their system, of
course. Some users came to the mailing list for a one-shot
troubleshooting purpose, while others repeatedly came back
to upgrade, change, or maintain their system.
Those users who were interested in their system over time
had to consider what we call trajectory alignment, aligning
themselves with other individuals and with the community.
We use the term trajectory from Strauss [26], who defines a
trajectory as: “(1) the course of any experienced
phenomenon as it evolves over time (an engineering
project, a chronic illness, dying ...) and (2) the actions and
interactions contributing to this evolution.”
All users had to align what they wanted to do with others’
trajectories of use. This largely happened in two ways.
First, users needed to know what other users had done and
were likely to do, especially those users who had similar
configurations. Second, as users anticipated how they
wanted their MythTVs to be, other users who already had
gone through similar experiences could discuss what could
be potentially done or what might be a potential problem. In
this way, one’s trajectory of use became intermeshed with
others’. For example, when Vamshi was trying to figure out
why he could not watch live TV, one of the helpers asked
which capture card he was using, because the helper knew
about the consequences of using different capture cards due

to his past experience. Another example of trajectory
alignment is with critiques, which warn users about
combinations of components that might break their
MythTV in future updates. This could help users to prevent
any potential future trouble.
Additionally, individuals aligned their usage trajectories of
MythTV with that of the community as a whole. Some
users on the mailing list wanted to configure their systems
to be in accord with the MythTV developers’ plans for the
future. Users did not want to upgrade to a new tuner card,
for example, that the MythTV developers were not willing
to support.
In summary, trajectory alignment is a conceptual
description of an important aspect of work that is required
for supporting individualized use, namely the coordination
work among individuals that allows the community
members to keep each others’ MythTV systems updated
and well maintained. The concept reifies the importance of
coordination and translation work among multiple users’
and developers’ trajectories.

DESIGN IMPLICATIONS
As stated earlier, our goal is to inform the design of tools to
help end-users configure and manage their systems more
effectively. As Stevens [24] noted, integrating appropriation
and design discourses into user interfaces is a critical design
challenge. We looked at the MythTV community in order to
understand how to help end-users take advantage of the
knowledge and experience of others when contending with
problems of their own.
We believe that the three challenges presented in the
Discussion section—dealing with transparencies,
navigating the customization and appropriation gulfs, and
aligning trajectories—are problems that must be addressed
to help users in configuring complex systems or
environments.
Several challenges could be addressed through relatively
straightforward mechanisms, in particular:
• Users would benefit from having additional information

about configurations. Our data suggest that if it were in
gray-box form, it would be more useful. Gray-box
solutions could include training wheels [7] for
configuration files, configuration artifacts that allowed
annotations, or ontology-based templates.

• Helping users jump over their customization and
appropriation gulfs would be also useful. A potential
solution might include providing forums to allow novice
users to select and discuss best practices. Also, finding
ways to maintain the wiki solutions, perhaps allowing the
users to note when solutions fail for them, would help
users know what to do.

Ameliorating both of these issues would be easier if there
were access to a large number of user configurations.
There is no way for the MythTV community, at this time, to
know what configurations actually exist. This is true for

many other systems as well. Users cannot easily share
complete configurations that work; configurations cannot
be grouped for comparison or help purposes.
Having a database of these configurations would help users
with their appropriation gulfs. One could follow expert
users, for example, noting when someone with greater
expertise changed or upgraded her configuration. One
might look up similar users to learn what he can do; this
would be useful especially for new users who are looking to
find an appropriate MythTV configuration to build.
A help system using crowd-sourced data could also help
align trajectories:
• One could answer what-if scenarios, based on what

others had done. What if a user wants to use DViCO
tuner card instead of the popular Hauppage card? A user
could look up the tuner card in the database to see what
people had used, since tuner cards are notorious for
having compatibility problems with Linux. A help system
might be able answer whether people had trouble after
installing the DViCO or help the user find others who had
used the card.

• The data could be used to align the anticipated trajectory
for a user’s configuration with others, creating proactive
help. This kind of help would determine potential
problems, based on what users with similar
configurations had done or had used.

CONCLUSION
In this paper, we studied the MythTV community as a place
to explore collaborative help for individualized use. We
were able to observe how the community struggled to
support individual users through configuration artifacts and
noted three significant challenges that we believe are
common to systems with complex configurations. Our next
goal is to implement our ideas for configuration support,
and examine whether what we learned from MythTV can
be expanded to other technical communities.

ACKNOWLEDGMENTS
This work has been funded in part by NSF 0905460. We
thank our participants for helping the project and members
of MISC and the SocialWorlds group for their support.

REFERENCES
1. Ackerman, M. and C. Halverson. Considering an

organization's memory. In Proc. CSCW. 1998. 39-48.
2. Ackerman, M. and L. Palen, The Zephyr Help Instance as a

CSCW Resource, in Resources, Co-Evolution and
Artifacts, M. Ackerman, Halverson, C., Erickson, T., &
Kellogg, W., Editor. 2007, Springer: New York. p. 37-57.

3. Ackerman, M.S., Augmenting organizational memory.
TOIS, 1998. 16(3): p. 203-224.

4. Alavi, M. and D. Leidner, Review: Knowledge
management and knowledge management systems. MISQ,
2001. 25(1): p. 107-136.

5. Balka, E. and I. Wagner. Making things work. In Proc.
CSCW. 2006. 229-238.

6. Brereton, P. and D. Budgen, Component-based systems.
IEEE Computer, 2000. 33(11): p. 54–62.

7. Carroll, J. and C. Carrithers, Training wheels in a user
interface. CACM, 1984. 27(8): p. 800-806.

8. Fischer, G., A.C. Lemke, T. Mastaglio, and A.I. Morch,
The role of critiquing in cooperative problem solving.
TOIS, 1991. 9(2): p. 123-151.

9. Halverson, C., T. Erickson, and M. Ackerman. Behind the
help desk. In Proc. CSCW. 2004. 304-313.

10. Kahler, H., Supporting collaborative tailoring, 2001,
Roskilde University, Denmark.

11. Kiesler, S., B. Zdaniuk, V. Lundmark, and R. Kraut,
Troubles with the internet. HCI, 2000 15(4): p. 323-351.

12. Koch, M. and G. Teege. Support for tailoring CSCW
systems. In Proc. CSCW. 1999. 146-152.

13. MacLean, A., K. Carter, L. Lövstrand, and T. Moran. User-
tailorable systems. In Proc. CHI. 1990. 175-182.

14. Mørch, A. and N. Mehandjiev, Tailoring as collaboration.
JCSCW, 2000. 9(1): p. 75-100.

15. Mørch, A., G. Stevens, M. Won, M. Klann, Y. Dittrich,
and V. Wulf, Component-based technologies for end-user
development. CACM, 2004. 47(9): p. 59-62.

16. Nardi, B.A. and J.R. Miller, An ethnographic study of
distributed problem solving in spreadsheet development, in
CSCW. 1990, p. 197-208.

17. Page, S.R., T.J. Johnsgard, C. Uhl Albert , and D. Allen.
User customization of a word processor. In Proc. CHI.
1996. 340-346.

18. Poole, E.S., Chetty, M., Morgan, T., Grinter, R. E., and
Edwards, W. K. Computer help at home. In Proc. CHI.
2009. 739-748.

19. Poulin, J., J. Caruso, and D. Hancock, The business case
for software reuse. IBM SJ, 1993. 32(4): p. 567-594.

20. Rodden, T., A. Crabtree, T. Hemmings, B. Koleva, J.
Humble, Kettle, P., Kesson, P, and R. Hansson, Between
the dazzle of a new building and its eventual corpse. In
Proc. DIS. 2004, p. 71-80.

21. Roth, C. Viable wikis. In Proc. WikiSym. 2007. 119-124.
22. Singh, V. and M. Twidale. The confusion of crowds: non-

dyadic help interactions. In Proc. CSCW. 2008. 699-702.
23. Singh, V., M. Twidale, and D. Nichols. Users of OSS-How

Do They Get Help? In Proc. HICSS. 2009. 1-10.
24. Stevens, G., Understanding and Designing Appropriation

Infrastructures. Ph. D. Thesis. 2009. University of Siegen.
25. Stevens, G. and S. Draxler. Appropriation of the Eclipse

Ecosystem. In Proc. COOP. 2010. 287-308. Springer.
26. Strauss, A., Continual permutations of action. 1993: Aldine

de gruyter.
27. Torrey, C., McDonald, D.W., Schilit, B.N. and Bly, S.

How-To Pages. In Proc. ECSCW. 2007. 391-410.
28. Trigg, R.H. and S. Bødker. From implementation to design.

In Proc. CSCW. 1994. 45-54.
29. Wulf, V. “Let's see your search-tool!”—collaborative use

of tailored artifacts in groupware. In Proc. GROUP. 1999.
50-60.

30. Wulf, V., V. Pipek, and M. Won, Component-based
tailorability: Enabling highly flexible software
applications. IJHCS, 2008. 66(1): p. 1-22.

