
Brian Starr

Do I Care? -- Tell Me What’s Changed on the Web

Mark S. Ackerman Michael Pazzani
Information and Computer Science

University of California, Irvine
. {bstarr, ackerman, pazzani}@ics.uci.edu
Iattp://www.ics.uci.edu/CORPS/ackerman.html

Abstract
We describe the Do-I-Care agent, which uses machine
learning to detect "interesting" changes to Web pages
previously found to be relevant. Because this agent
focuses on changes to known pages rather than
discovering new pages, we increase the likelihood
that the information found will be interesting. The
agent’s accuracy in finding interesting changes and in
learning is improved by exploiting regularities in how
pages are changed. Additionally, these agents can be
used collaboratively by cascading them and by
propagating interesting findings to other users’ agents.

Introduction
After one has discovered Web resources, a problem
remains: How do you know when to revisit those
resources for new material? Consider some common post-
discovery situations:

You know the page where a colleague has his
publications. You would like to obtain interesting new
papers as they are posted.

You have obtained the page for a low cost clothes
merchandiser. You would like to know when there is
a sale on jeans or Hawaiian shirts.

These are examples of change events that occur
somewhat unpredictably and offer no explicit notification.
Today, interested parties must occasionally check by hand.
This can be burdensome and tedious, and one may forget to
do it on a timely basis. While there are a number of agents
that will notice that some modification occurred, we would
like an agent that noticed when interesting changes
occurred. The user may not want to know when the author
changed the font, some minor text, or added insignificant
material.

This paper provides an overview of an agent, called Do-
I-Care, that determines when interesting changes have
occurred on previously discovered pages. It works by
applying machine learning to regularities, including social
norms of use, on the Web.

Locating information on the Web
There has been considerable effort devoted to the resource
discovery problem (Schwartz et al. 1992). We note two
classes of systems that facilitate information and resource
location, and discuss some of their limitations.

Active browsers

Active browser systems, such as Web Watcher (Armstrong
et al. 1995), treat the Web as a graph that can be searched
using evaluation functions and heuristics derived from a
model of users’ goals and interests. While users browse
the Web, Web Watcher offers navigational suggestions that
direct them along paths that maximize these functions.
User models are obtained directly from users while they
are browsing, and require their active participation. If the
user model is accurate, the advice given will presumably
guide users to useful Web locations.

Because searching is in real time, given the size and
complexity of the Web, agent suggestions can approximate
hill climbing. Thus, the choice of starting points is
particularly important, and some form of preliminary
catalog search may be necessary. More seriously, active
search requires human participation, time, and attention,
which are generally scarce resources.

A variation described by Balabanovic and Shoham
(1995) is an agent that wanders the Web independently
from the user. It reports interesting pages to the user, who
can then rate these suggestions. Therefore, the system uses
relevance feedback, yet only occasional human
participation is required. However, this agent is not
optimized to detect changes to existing pages.

There are also a number of agents that monitor Web
pages for any modification, such as URL-minder.
However, many of the changes detected may be irrelevant.

Index creation and lookup

Index creation and lookup systems, such as ALIWEB
(Koster 1994), utilize an information retrieval metaphor,
where the Web is treated as a vast database of information
to be cataloged and indexed.

These systems make the Web accessible to users who
need not know its organization. However, users must

119

From: AAAI Technical Report SS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



articulate their information goals in well-formed queries.
Also, due to the Web’s rapid, uncoordinated growth,
precision is increasingly important (Pinkerton 1994).
Finally, users interested in new information must resubmit
their queries if notification is not supported.

The SHADE and COINS matchmaker systems (Kuokka
and Har~da 1995) utilizes a knowledge sharing standard
such as KQML to match user requests with information
provider’s "advertisements", and can notify users when it
receives updates from providers about interesting changes
to their knowledge-base. However, this system must rely
on provider honesty, since there are no technical checks
against suppliers that "cheat" (Brown et al. 1995).

The Do-I-Care agent
We propose a third type of system, optimized ’for
reoccurring information needs. Do-I-Care was designed to
periodically visit Web pages and detect interesting
changes. We use machine learning to identify by example
what changes are interesting, and how often they occur.

System architecture

The Do-I-Care agent has five major functions. It must:

¯ Periodically visit a user-defined list of target pages.

* Identify any changes since the last time it visited.

¯ Extract discriminatory attributes and decide if the
changes were interesting.

¯ Notify the user if the change was interesting.

¯ Accept relevance feedback on the interestingness of
the change.

Exploiting domain specificity

This problem has a number of unique features that we
exploit to improve precision (percentage of retrieved items
that are "interesting") and recall (the percentage 
potentially interesting items that are actually retrieved).
Precision, recall, and relevance feedback profit from
improvements in attribute collection made possible by
domain knowledge and simplifying asmanptious. First, we
assume that users already have lists of Web pages that will
have interesting information, and that they feel these lists
are adequate for their needs. By limiting our search to a
small subset of Web pages specifically selected because
they are likely to contain interesting information, precision
is greatly improved. The increased precision allows us to
increase recall without penalty.

Second, once a Web page stabilizes, authors seldom
radically change them. Change is usually incremental, and
new things are usually added in ways that are consistent
with what has been done in the past. This is true because
of the additional work involved in radical alterations, and

because authors tend to follow styles consistent with the
other pages of similar content and purpose. In a shared
environment like the Web, forms and meanings tend to
become socially constructed (Berger and Luckmann 1967).
Therefore, we assume that Web pages generally change
incrementally. We represent change as document segments
that have been added or altered since the last time the page
was visited. Deleted segments are ignored. These changes
are evaluated, and those found to be relevant are reported
to the user. By accepting or rejecting these suggestions, the
user refines the types of changes that are interesting.

However, different pages may be interesting for different
reasons. For example, the "interesting" attributes in pages
with links to new papers may be different than for pages
with sale items. Therefore, users may create multiple
agents, each one trained to retrieve differing types of
changes. These agents may have different user models and
notification requirements.

Identifying interesting changes

Since the user provides feedback on whether changes are
interesting and we are concentrating on additions, we can
view the process of determining whether a change is
interesting as a classification task, and we can view the
process of learning a user profde as a supervised learning
task.

We are currently attempting to use machine learning for
this task. We represent each addition by a relatively small
number of features. First, we find words that are
informative, by computing the mutual information (e.g.,
Qulnlan 1986) between the presence of a word in the
document and the relevance feedback. In addition, we use
attributes about the changed segment, such as its size.
Once the examples are represented as feature vectors, any
of a number of standard learning algorithms might be used
to determine whether a change is interesting. We are
experimenting with a simple Bayesian classifier (Duda and
Hart 1973). Informally, we have found this method to be
80-90% accurate after 5-10 training examples.

Notifying the user

Agents are capable of notifying users about interesting
changes by e-mail. E-mail notifications list the agent’s
name and Web page, as well as a link the to page that
changed. The remainder of the message contains those
attributes values that caused the segment to be considered
interesting, and optionally the full text of the change.

All changes are also listed in the agent’s associated Web
page, which users can browse at their leisure. This Web
page is also used for relevance feedback.

Training and configuring

As noted in the previous section, each agent has an
associated Web page to report results back to the user.
This Web page also serves as the user interface to the Do-I-
Care agent. The agent’s Web page contains a link to a
form allowing the user to edit the agent’s name,

120



description, notification e-mail addresses, and pages to
monitor for changes. The attribute values that define an
interesting change are also listed, but are not editable.
Within the body of the page, every change is listed, along
with the segment change information described previously.

Every listed change has two associated menus. One
menu selects whether to display the full text of a change or
a link. The second allows the user to provide relevance
feedback, and has three choices: I do care, I do not care,
and unrated. When new change is discovered, the
associated feedback menu’s value is unrated, and the full
text is displayed. When the user indicates his preferences
via the feedback menu, the agent reinforces or de2
emphasizes the attributes it used to evaluate the change.
The full text of ’Yated" changes are not displayed by
default, since the user has already seen them.

Scheduling visits

For each target page, the agent keeps track of when the
page was last visited, how often the page should be visited,
when the next visit will be, and when the last change was
detected for that page. The last attribute allows the agent
to adjust the visit periodicity based on past activity; there is
no reason to visit a page once a day if it hardiy changes.

Collaborative use
Although this paper has described using the Do-I-Care
agent for individual use, the system was also designed to
be used collabomtively. Because all communication takes
place through a list of e-mail addresses and a Web page,
any number of users can share the same agent. Simple
Unix and WWW server access control mechanisms can be
used to adjust who can view and modify an agent’s activity
and configuration. Change notifications can also be sent to
distribution lists and news groups. Finally, an agent’s Web
page may be included other agents’ list of pages,
facilitating the construction of group or organizational
"what’s new and interesting" Web pages.

Our future plans include exploring the collaborative
aspects of this agent. We feel that it provides a low cost
method to facilitate group or organizational sharing of
information by capturing and exploiting naturally occurring
behavior.

Summary

Do-I-Care attempts to solve the post-discovery problem:
when should the user revisit a known site for interesting
new information? Doing this by hand is too laborious, and
existing agents do not address this problem.

To address this issue, we have attempted to use machine
learning and other techniques to discover interesting
changes. Because the user has already identified relevant
locations, precision is improved. Regularities in how Web
pages are usually changed improves attribute extraction.

The Do-I-Care system represents an interesting variation
on previous information location systems. Unlike most
existing systems that focus on answering immediate
queries, Do-I-Care attempts to satisfy the user’s ongoing
need to remain informed and up-to-date about those parts
of a changing world that most interest him.

References
Armstrong, Robert, Dayue Freitag, Thorsten Joachims, and
Tom Mitchell. 1995. WebWatcher: A Learning Apprentice
for the World Wide Web. Proceedings of the AAAI Spring
Symposium Series on Information Gathering from
Heterogeneous, Distributed Environments: 6-12

Balabanovic, Marko, and Yoav Shoham. 1995. Learning
Information Retrieval Agents: Experiments with
Automated Web Browsing. Proceedings of the AAA1
Spring Symposium on Information Gathering from
Heterogeneous, Distributed Environments: 13-18

Berger, Peter L., Thomas Luckmann. 1967. The social
construction of reality; a treatise in the sociology of
knowledge, New York : Doubleday.

Brown, Carol, Les Gasser, Daniel E. O’Leary, and Alan
Sangster. 1995. AI on the WWW: Supply and Demand
Agents. IEEE Expert : 50-55.

Duda, R., and P. Hart. 1973. Pattern classification and
scene analysis. New York: John Wiley and Sons.

Koster, Martijn. 1994. ALIWEB - Archie-Like Indexing in
the WEB. Computer Networks and ISDN Systems 27(2):
175-182.

Kuokka, Daniel, and Larry Harada. 1995. Supporting
Information Retrieval via Matchmaking. Proceedings of
the AAAI Spring Symposium Series on Information
Gathering from Heterogeneous, Distributed Environmentz
111-115.

Pinkerton, Brian. 1994. Finding What People Want:
Experiences with the WebCrawler. Proceedings of the
Second International WWW Conference.,
http://info.webcrawler.com/bp/WWW94.hlml

Quinian, J. R. 1986. Induction of decision trees. Machine
Learning, 1: 81-106.

Salton, Gerard, and Michael J. McGill. 1983. Introduction
to Modern Information Retrieval New York: McGraw-
Hill.

Schwartz, Miachel F., Alan Emtage, Brewster Kahle, and
B. Clifford Neuman. 1992. A Comparison of Internet
Resource Discovery Approaches. Computing Systems
5(4): 461-493.

121




