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ABSTRACT 
People search for people with suitable expertise all of the time in 
their social networks – to answer questions or provide help.  
Recently, efforts have been made to augment this searching. 
However, relatively little is known about the social characteristics 
of various algorithms that might be useful. In this paper, we 
examine three families of searching strategies that we believe may 
be useful in expertise location. We do so through a simulation, 
based on the Enron email data set.  (We would be unable to 
suitably experiment in a real organization, thus our need for a 
simulation.)  Our emphasis is not on graph theoretical concerns, 
but on the social characteristics involved.  The goal is to 
understand the tradeoffs involved in the design of social network 
based searching engines. 
 

Categories and Subject Descriptors 
H.5.3 [Group and Organization Interfaces]: Computer-
supported cooperative work, Evaluation/methodology; H.3.3 
[Information Search and Retrieval]: Search process 

General Terms 
Human Factors, Experimentation, Algorithms  

Keywords 
Computer-Supported Cooperative Work, CSCW, expertise 
location, expertise finding, expertise sharing, social computing, 
social networks, information seeking, organizational simulations 
 

1. INTRODUCTION 
Imagine you have a question that is blocking your work. For 
example, you might need help understanding a warning message 
from a critical application, and you're unable to locate a document 
explaining the message.  Or as another example, you might need 
to understand how to work around a specific rule for ordering 
equipment. 
In both of these situations, someone knows the answer to the 
question. Finding that person, however, can be difficult.  Ideally, 
we would like to find a person who knows the correct answer to 

that specific problem.  Additionally, we would like to ask only the 
appropriate person and to find a person who has enough free time 
to answer the question. 
In reality, of course, answering questions is not so easy.  People 
are busy, they may lack the requisite expertise to answer the 
question, or they may lack the social graces to answer well.  As a 
first step, you may not know whom to ask. 
Systems that help find others with appropriate expertise are called 
expertise finders or expertise location engines.  These have been 
explored in a series of studies, including Streeter et al. [23] and 
McDonald and Ackerman [18] as well as the studies in Ackerman 
et al. [1].  Newer systems, that use the social network of an 
organization to help find people, have also been explored, most 
notably in Yenta [11], ReferralWeb [15], ER [18], and MARS 
[30].  These systems attempt to leverage the social network within 
an organization to help find the appropriate others, thus reducing 
the need for specialized data.  This is a critical requirement for 
expertise finders, as requiring specialized data for expertise 
location makes adoption difficult at best. 
Because each of these newer social network based expertise 
finders uses social network data (which may be derived in a 
number of ways), we can now move away from research 
emphasis on the systems and towards an examination of the 
algorithms used to search the social networks.  
This paper surveys three algorithms in the open literature; it also 
adds several additional algorithms. These new algorithms, as will 
be seen, have interesting social characteristics. The main 
contribution of the paper, accordingly, is to examine those 
algorithms using a simulation testbed in order to evaluate them 
and understand their relative tradeoffs.  We believe this work is 
critical if progress is to be made on finding methods and 
mechanisms for expertise location. 
The paper proceeds as follows:  First, we survey the related 
research.  Second, we introduce our simulation experiments, 
including the data set we used, the algorithms we evaluated, and 
the performance measures we used. Third, we describe our 
analyses and findings. At last, we discuss the design implications 
and future work. 
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2. SEARCHING IN SOCIAL NETWORKS 
In this section, we first review the rich literature about searching 
for people in social networks. Then we examine the 
computational approaches used for finding people in social 
networks, when the person is known in advance and when he is 
not. The more interesting case for us is the latter, since this is the 
expertise location problem.  
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2.1 Small World 
The classic study on searching in social networks is the “small 
world” experiment. In late 1960s, Milgram and Travers found that 
subjects could successfully send a small packet (with a name, the 
city, and the profession of the recipient on it) from Nebraska to 
people in Boston [19][24].  The subjects did so, even though they 
had only local knowledge of their acquaintances, by passing the 
packet to an acquaintance that they believed to be closest to the 
target. Travers and Milgram found the average length of 
acquaintance chain is roughly six. The result of this experiment 
indicated that the social network is searchable and that the paths 
linking people are short, the so-called “six degrees of separation”.  
A key question in such an experiment is how people select the 
next person to whom to forward the packet or message.  
Potentially each subject has hundreds of acquaintances, but picks 
one, which ultimately leads to a short chain between the sender 
and the target. Later similar experiments found that geographic 
proximity and similarity of profession to the target person were 
the most frequently used criteria by subjects [16][6][9].  
Recently, mathematical models have been proposed to explain 
why these simple heuristics are good at forming short paths 
[17][26]. These models assume that the social network usually has 
a structure, in which individuals are grouped together by 
occupation, location, interest, and so on.  As well, these groups 
are grouped together into bigger groups and so forth. The 
difference in people’s group identities defines their social 
distance. By choosing individuals who have the shortest social 
distance to the target at each step, people can gradually reach the 
target in a short path with only local information about their own 
immediate acquaintances.  

2.2 Searching For Expertise in Social 
Networks  
These studies on the small world problem have led to two lines of 
computationally-based approaches that concern searching for 
people within social networks. The first is an automatization of 
the small world approach, where the target is known by name or 
unique identifier [3][28]. The second is locating a person with 
some specific expertise or knowledge.  We consider the latter.  
In an expertise location or expert finder problem, a suitable 
person or set of people is not known in advance.  One must be 
found by matching people against a list of attributes. 
A number of expertise location systems have been developed.  
For example, Who Knows [23] found people with appropriate 
expertise by doing latent semantic indexing of project reports, 
Yenta [11] found people by searching email archives in a 
distributed manner, and Expertise Recommender [18] used locally 
meaningful data to recommend sets of potential answerers for 
queries. Other work is surveyed in Ackerman, Wulf and Pipek[1].    
Yu and Singh’s referral system [30] is, as far as we know, the 
only paper that explicitly argues for a specific expertise-finding 
algorithm.  In their experiment, they use the similarity between a 
query vector and a neighbor’s expertise vector, plus some 
consideration of its historical referring performance, as the criteria 
for picking the next agent in a referral graph. The simulation 
results using a scientific co-authorship network suggest that this 
strategy can help people find experts in such a network.  

Yu and Singh’s algorithm is a useful first step, but their approach 
has limitations. There are several issues. First, the query vector 
and expertise vector in their experiment are manually coded; and 
each is a combination of preset topics from a taxonomy. This 
approach is not practical in real world scenarios: Questions are 
usually extremely detailed, and people cannot be categorized as 
one specific type of expert. Second, they had only a rudimentary 
consideration of the impact of the social network structure on the 
searching process.  Finally, and most importantly for this paper, 
they did not compare the performance of their algorithm with 
other possible algorithms; thus, the relative benefits and tradeoffs 
of their algorithm is unknown. Nonetheless, Yu and Singh’s 
algorithm is an important candidate for examination. 
In addition to Yu and Singh’s algorithm, several other algorithms 
can be adapted to the expertise location problem.  Adamic et al’s 
best connected search (BCS) algorithm [3][4], which makes use 
of the skewed degree distribution of many networks1, can also be 
used to find experts. By passing the query to highly connected 
nodes first, BCS can spread a query quickly in the network. 
However, Adamic et al. also found that the BCS algorithm is not 
always efficient in all networks. Nonetheless, Adamic et al’s 
algorithm may be valuable in many cases, and we will also 
include it in our investigation.  Breadth First Search (BFS) [21], 
which broadcasts a query to every person in a social network, has 
the strength of finding the closest expert available. But it can have 
a high cost both computationally and socially in that many people 
can be bothered. 
Thus there are three lines of potential algorithms in the open 
literature that need be examined. To our knowledge, these 
algorithms have never been evaluated together nor their tradeoffs 
and social characteristics examined. These social characteristics 
include standard attributes of social networks: 

• Connections among people are not uniformly distributed.  
Unlike a theoretically constructed graph, the connections 
among people in a social network are highly meaningful and 
vary greatly [25]. 

• The connections between two individuals can have different 
strengths.  There is a strength of association between 
individuals.  This strength of association varies and is not 
always symmetrical.  Usually, in social networks, the 
strength of association is divided roughly into strong and 
weak ties [12]. 

• People in a social network vary in their expertise, status, 
availability, and sociability. Unlike theoretically constructed 
graphs and computational agents, a person weighs his use of 
his social network by considering these additional 
characteristics. 

These social characteristics could lead to sizeable differences in 
the way information is transferred, affecting the performance of 
the searching algorithms. For instance, weak ties have been found 
to be important in helping people get new information [12] and 
adopt innovations [7]. In Dodd et al.’s small world experiment, 
successful searches were also found to be conducted primarily 
through intermediate to weak strength ties. 

                                                                 
1 In such a network, many nodes just have one or several links 

and a few nodes have many links. 
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These social characteristics, in addition to computational 
efficiency, will guide our outcome measures.  The following 
section introduces the outcome measures, but only after 
introducing the experimental testbed and the examined 
algorithms.  
 

3. SIMULATION 
In this section, we firstly discuss the simulation as our 
experimental apparatus. Second, we describe the data set we used 
and its limitations. Third, we introduce our new algorithms along 
with those previously proposed algorithms. Fourth, we describe 
the simulation process and the data we collected. Finally, we 
describe the evaluation criteria we used to compare these 
algorithms.   

3.1 Simulation as Experiment 
It may seem odd, at first glance, that we would wish to examine 
the social considerations and tradeoffs of these expertise locating 
(EL) approaches using simulations instead of field or laboratory 
experiments.  However, simulations appear to be a much more 
fruitful experimental apparatus or testbed for examining these 
issues.  This is unusual for CSCW investigations, and some 
explanation is required. 
Constructing well-controlled laboratory experiments of the size 
required to effectively test these algorithms would at best be 
extremely difficult.  On the other hand, while it might be possible 
to construct Internet-based experiments of a suitable size, these 
would be uncontrolled.  Alternatively, Internet subjects would be 
required to run special applications (e.g. email monitoring 
software or email indexing software); this is extremely unlikely.  
Finally, a real organization (of a sufficiently large size) would 
provide us with enough users and use.  However, we have been 
unable to convince any large corporation to either provide us with 
all of the company's email or to introduce experiments into their 
ongoing communication systems. It is unlikely that we will. 
Accordingly, we examined simulations as a potential 
experimental apparatus for our investigations.  We felt that the 
major problem with using simulations was the threat to the 
validity of our results. 
Simulations are often too artificial.  Overly rational agents, a 
small set of experimental categories and of agent behaviors (so as 
to be tractable), and severe limitations on methods of choice can 
lead to problematic social findings because of the restrictions.  
This is of course not necessarily true - one can look to the 
insightful simulations of Hutchens or Axelrod [14][5].  While 
socially limited, their restricted operationalizations have led to 
insights about cultural production and coordination, respectively. 
In the following work, we have tried to avoid artificiality in two 
ways.  First, we constructed our simulations using a data set from 
a real organization rather than using artificially or theoretically 
constructed data.  The Enron email data set will be discussed 
below. 
We also tried to operationalize our outcomes in a manner that was 
not overly restrictive.  Of course, any operationalization in an 
experimental situation must be restricted, if nothing else to be 
concrete.  Our operationalizations, which will also be discussed 
below, have implied limitations and restrictions.  We have tried to 
account for these limitations both in our discussion and by doing 

detailed sensitivity analyses on our results, explicitly to look for 
the effect of such restrictions.  We discuss these sensitivity 
analyses, and where we were unable to do one, below.   

3.2 Simulation Data 
The simulation data set is the well known Enron email dataset [8]. 
After cleaning the data, it contains data from 147 employees, 
mostly senior management of Enron. There are a total of 517,431 
messages in the data set.  
To construct a social network, a sub sample of 32766 messages 
that were exchanged among these 147 employees was used to 
construct a directed graph. As shown in figure 1, the network is a 
relative dense internal social network with 147 nodes. The density 
of the network is 0.096, and the average shortest path is 2.498.  

 
Figure 1: Enron Email Network 

Figure 2 displays the cumulative out-degree2 distribution of the 
network. It is highly skewed with some nodes having high degree 
in the tail. 
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Figure 2: Cumulative Out-Degree Distribution of Enron email 

network 
Second, using a standard document indexing method [29], we 
indexed all the messages that a person sent or received for each of 
the other 146 users. The indexed result for a single user is a 
keyword vector, in which a keyword is weighted by its term 
frequency inverse document (message) frequency. These indexes 
are used as information profiles for the users.  
By doing this, we get a testbed with a network structure and 
information profiles derived from a real organization. There are, 
however, two possible limitations with this data set.  
First, the simulation network is not the complete email social 
network of the Enron organization. It consists of the management 
                                                                 
2 Here we simply use the number of other users to whom a user 

had sent emails as his/her out-degree.  
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level subset of that network. Compared to the complete 
organization network (which we cannot obtain), this network is 
likely to be more dense with a smaller average shortest path. This 
is because general employees usually have a lower probability 
than managers of knowing people in other groups. Furthermore, 
managers may have different information profiles (or expertise) 
than other employees, such as engineers or clerical personnel.  To 
examine whether the data set has different properties than the full 
social network, we constructed two new networks by removing 
edges that were weaker than a threshold and by removing high 
degree nodes. This gave us social networks with different network 
characteristics.  We ran the same simulations on these two 
additional networks as a sensitivity analysis; we discuss the 
impact on the findings below.  
Second, using this data set to determine expertise may be 
problematic. A keyword in one’s email folder does not 
necessarily mean that one has expertise concerning that keyword. 
This is a limitation of our operationalization: we are assuming a 
perfect match between the information profiles and expertise.  
Determining an ontology of expertise and determining where it is 
located in an organization is a significant, ongoing research 
problem [2], and we believe this operationalization is a good 
surrogate. Furthermore, for transactive knowledge, 
communication is likely to be an indicator. Accordingly the 
information profiles are not only an indicator of this aspect of 
organizational expertise, they serve as an approximation of the 
location of other types of organizational expertise.   
We believe that despite these limitations, the Enron data set gives 
us a realistic testbed, reducing the amount of artificiality in the 
simulation.  We will discuss where its limitations affect the results 
below. 
 

3.3 Searching Strategies Evaluated 
We evaluated total 8 searching strategies from three families in 
this simulation; include 3 found in the public literatures and 5 
proposed based on related theories. They are shown in Table 1.  
 

Family Name Heuristic From        

BFS Breadth first 
Search 

Classic  AI  General 
computati
onal  RWS Random walk  Adamic  et al. 

BCS Best 
connected 

Adamic et al. 

WTS Weak tie * Granovetter, 
Burt  

STS Strong tie * Granovetter 

CSS Cosine 
similarity 

* Wasserman et 
al. 

Network 
structure 
based 

HDS Hamming 
distance 

* Hamming 

Similarity 
based 

ISS Information 
scent 

Extract from Yu 
and Singh 

Table 1. Evaluated Algorithms (* indicates algorithms that we 
proposed based on related works) 

All these strategies are based on the information that a user can 
gather or derive locally from their email communications with 
peers. There may be additional strategies, such as using people’s 
position in physical space or in an organizational hierarchy [3], 
but information available in the Enron data set limits us to the 
ones examined in this paper. In any case, the strategies examined 
here are, we believe, the most important ones to examine first. 
Details of these algorithms are: 
Breadth First Search (BFS) broadcasts a query to all of one’s 
neighbors instead of picking a neighbor according to a heuristic. It 
can find the target closest to the source but with extremely high 
bandwidth costs (as in p2p file sharing networks).  
Random Walk Search (RWS) randomly chooses one of the current 
query holder’s neighbors to whom to spread the query.  RWS will 
be our baseline to determine whether other heuristics are “better” 
in spreading a query.  
Best Connected Search (BCS) is the algorithm Adamic et al. used. 
The only difference from their algorithm is that we construct our 
network as a directed network. Social relations are not 
symmetrical, and it may affect people’s information seeking 
behavior in a social network.  In any case the Enron data set has 
both outgoing and incoming messages.  We use out-degree of 
connectivity instead of both in-degree and out-degree in 
evaluating one’s neighbors.  
Weak Tie Search (WTS) is proposed based on Granovetter’s weak 
tie concept as discussed above. There are different ways of 
measuring relationship strength [22], here we simply assume that 
a peer who receives the fewest messages from a user is a weak tie 
and will be chosen as the next one to whom to forward the query.  
Strong Tie Search (STS) is proposed as a comparison with WTS. 
It picks the neighbor who has received the most messages from 
the current user. It may be a reasonable strategy in practice 
because there is usually lower social cost when one asks for help 
through strong ties.  
Hamming Distance Search (HDS) and Cosine Similarity Search 
(CSS) strategies are two structural dissimilarity strategies based 
on definitions of structure equivalence in social network studies 
[25]. HDS picks the neighbor who has the most uncommon 
friends from the current user. The definition of Hamming distance 
[13] favors the nodes with high out-degree. HDS could be viewed 
as an improved version of BCS. CCS decreases the high degree 
impact by dividing the Hamming distance by the total number of 
out-degree relations (friends) a neighbor has.  
Information Scent Search (ISS) is extracted from Yu and Singh’s 
algorithm [30], leaving aside the sociability learning part. ISS 
picks the next person who has the highest match score (which we 
call information scent) between the query and his profile.  Our 
implementation of the algorithm is slightly different from Yu and 
Singh, since we needed to adapt their algorithm to the Enron data 
set.  (Remember that Yu and Singh used only 19 categories or 
keywords.) We use the automatic generated keywords profile 
instead.  
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3.4 Process and Data Collection  
We manually generated 147 questions by picking keywords from 
one or several messages from the sent folder of each of 147 email 
users. Each question has three to five keywords that do not 
include common words, such as “hi” “the”, “ok”, and “enron”. 
Thus, we assumed each question has at least one expert available 
in the network. 
During each round of the simulation, a question and an asker are 
selected at random. Each searching strategy is executed 
simultaneously at each round.  
The match between a query and a person is calculated in two 
steps:  

1) Message level matching: This is a standard information 
retrieval matching based on the TF/IDF measure. In 
general, if a message has the exactly the same 
combination of keywords as the query, it has the highest 
score; if it has only several keywords out of many, it 
has a low score. 

2) Personal level aggregation: A person might have 
multiple messages with different matching scores that 
related to the query. This raises some issues. For 
instance, how could we compare a person who only has 
one document that has a very good match score with 
another person who has hundreds of related messages 
none of which is a good match? We chose to weight the 
documents by their ranking in one person's results in the 
personal level aggregating step.  
So, a person's match to the query is measured 
as∑ . We use the top 20 

messages. 
=

+
n

i
iireMessageSco

1
)1/()(

The criterion of a satisfied match is calculated by multiplying the 
best match score available, which is pre-calculated using a global 
search, with a satisfaction factor S (S=0.8 here). 
The general query propagating process is as follows:  

1) A user receives a query message (or the asker has a 
query). 

2) The simulation engine searches all of the user’s directed 
neighbors’ information profiles. If there is a match 
above a desired threshold, it returns that person to the 
asker and stops the search.  If there is not, the BFS 
strategy will broadcast the query to all of the -
neighbors; other strategies will pick a neighbor 
according to their definitions. The visited node’s ID is 
appended to the query message so a node would not be 
visited twice. Except for BFS, the asker starts a new 
searching path if the previous path reaches a dead end4.  

3) The query will be continually propagated in the network 
until no node is not visited (BFS) or no path is left 
(other strategies).  

Note that in step 2, we assume that each user has knowledge of 
his direct neighbors’ knowledge or has access to their profiles. It 

                                                                 
4 It could reach a dead end or the Time-to-live (TTL) of the query 

message expires. The TTL is set to infinite in this simulation.    

corresponds to transactive memory [27]. It is also the assumption 
used by Adamic et al in their small world experiments.  
The data we collected during each round of the simulation 
include: asker’s information scent on the query, steps (people 
used) to complete a query, number of paths tried (how many 
times a query needed to be restarted), number of people used, and 
the expertise score of the target. Since not all queries are 
successful because some nodes are not reachable from some other 
nodes, we record the number of search failures as well. After all 
rounds (N=30,000) are finished, we summarize overall how many 
times a user has been queried in each strategy.  
We then calculate the out-degree and in-degree of each user. We 
used these to analyze their influence on the performance of 
algorithms.  
 

3.5 Evaluation Criteria  
Compared to searching a file in peer-to-peer file networks or 
searching for a person in a small world experiment, searching for 
expertise in social networks is a far more complex process. It 
involves many more social interactions. Speed and computational 
resource are not the only concerns; psychological and social costs 
are very important. After a social network based expertise system 
is adopted into an organization, the searching activities will be 
embedded into people’s daily lives. So, an evaluation should not 
only consider the computational performance per query, but also 
needs to consider the social consequences of the strategies.  
Based on these considerations and related work, besides analyzing 
the result from a computational efficiency perspectives, we 
compare the social cost of the evaluated algorithms using three 
measures: 

• Number of people used per query (how many people 
were bothered). 

• Depth of query chain (i.e., how deep the query went). 

• Total labor distribution in all queries. 
The number of people used per query is the measure Adamic et al. 
used in their simulation [3]. It counts how many nodes (people) 
processed the query during a search. It is a measure of social cost 
per query as well as the speed of the algorithm. When searching 
for information in social networks, we usually want to bother as 
few people as possible.  If each used person took one unit of time 
to process a query and the query is propagated sequentially, we 
want the search process to be fast and bother the fewest number of 
people possible.  
The depth of query chain measure, in many cases, is equal to the 
number of people used per query. It becomes different when there 
is more than one path used for a query. The depth of query chain 
counts only the number of people involved in the final successful 
path. In real life, less distance also means a high probability of 
getting response from an expert.  
Labor distribution measures the overall social cost in an 
organization related to people’s expertise seeking activities. 
Different from the people used per query, it counts how 
frequently a person is used by each searching strategy (during an 
entire simulation). 
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4. DATA ANALYSIS  
In this section, first, we describe the general computation results. 
Second, we introduce the general findings related to the social 
cost measures. Third, we briefly analyze the impact of social 
characteristics on these algorithms. Finally, we discuss the 
sensitivity of the results by examining two modified networks.   

4.1 General Computational Results 
Table 2 displays the overall success rates of the algorithms. In the 
table, there are two categories of query failures. The first is when 
there is no path between the asker and available experts. All the 
failures in using BFS belong to this category. The second is when 
the algorithm cannot find available experts even when there are 
paths. For expertise location, we are primarily concerned with this 
type of failure. (The adjusted rate in the table shows the 
successful rate of a query presuming the first type of failure does 
not occur.)  
From the table, we can see that these algorithms are reasonably 
successful. They can all find a qualified expert for most of the 
queries in this network. (Note with N=30,000, all differences are 
statistically significant. We omit p-values from our discussion 
except where important.)     

Algorithm BFS  

( b ) 

R W S  

( r )   

WTS 

( w ) 

STS 

( s ) 

BCS 

( h ) 

I S S 

( i )

CSS  

( c ) 

HDS 

( d ) 

Success  
Rate (%) 97.9 94.7 96.2 95.8 97.1 97.1 97.1 97.1 

Adjusted 
Rate(%) 100 96.8 98.3 97.9 99.2 99.2 99.2 99.2 

Table 2: the success rate of various algorithms 

 

Figure 3 further shows the percentage of successful queries within 
a given number of search steps using the various strategies. As 
one can see in the figure, for different search lengths, the rank of 
these algorithms changes very little. Although HDS and BCS are 
a little slower than BFS5, they are still very fast and successfully 
finish 80% of the queries within six steps. CCS and ISS can still 
finish more than 60% queries, WTS can find 55%, but RWS and 
STS can only find about 40% within six steps.  
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Figure 3: Percentage of succeed queries within different 

search length using various strategies  
                                                                 
5 Note in regarding the speed of BFS, we use the depth of the 

search instead of the number of people used in the query. 

We can also see that when targets are far away from the askers, 
there is much less difference among these strategies. 

4.2 Comparison of Social Costs 
4.2.1 Number of People Used Per Query  
Figure 4 shows the distribution of the number of people used per 
query using the different algorithms. As the system becomes less 
completely automatic, this value becomes increasingly important 
to people’s user experience.  Measures for these values are shown 
in table 3. Compared to the BFS broadcasting, HDS, BCS, and 
CSS strategies bother many fewer people. ISS and WTS are also 
clearly better.  

 
Figure 4: Distribution of Number of People used using various 

strategies  
 

Algorithm BFS 

(b) 

R W S  

( r ) 

WTS 

( w ) 

STS 

( s ) ( i )

BCS 

( h ) 

I S S 

 

CSS  

( c ) 

HDS 

( d ) 

Median 9 8 6 8 3 5 4 3 

M a x . 134 117 94 112 39 76 28 49 

Table 3: Number of People used using various strategies 
 

In Figurer 4, also note that there are a lot of outliers: Some 
queries used a lot of people before finding a desired target. 
Regarding the worst queries, as shown in Table 3, CSS handles 
them best and BFS handles them worst. 
Based on these results, we can see that in this network, HDS, 
BCS, and CSS clearly have advantages over BFS and RWS 
regarding the number of people used per query.  Also, ISS and 
WTS are better, but less so.  Yu and Singh considered ISS to be 
very promising, but here we have found it less so than HDS, BCS, 
and CSS.  Considering their performance as shown in Figure 3, 
HDS, BCS, and CSS could be promising algorithms to replace 
BFS when the speed and depth of searching chain are not the most 
important factors while the number of people being bothered is. 
The other interesting finding is that STS is obviously worse than 
WTS. The implications of this finding will be discussed later.  

4.2.2 Depth of Query Path  
Figure 5 shows how the depth of the query is distributed for each 
algorithm.  This measures how long a query is in the social 
network; when designing a system, one would like to minimize 
these values. Except BFS, which we already knew always found 
the closest target, the result is not very different from measuring 
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the number of people used per query. We checked the number of 
paths tried for the various algorithms (except BFS) and found that 
most successful queries are finished using only one path. This 
indicates that at least in this social network, there is little need to 
send queries simultaneously to multiple users to achieve a 
successful result. This implied in our dataset, therefore, the two 
measures of depth of query path and number of people used 
would have the nearly same value. 

 
Figure 5: Distribution of depth of query chain using various 

strategies 

4.2.3  Labor distribution  
Figure 6 and Table 4 show the labor distribution (i.e., how 
distributed the search is) for these strategies. We can see that 
when using BCS, HDS, and CSS, most people are used less 
frequently, but some users are used extremely frequently. This 
indicates that referring is mainly loaded on very few members of 
the network.  ISS is a little more balanced than these three 
algorithms, and BFS bothers people much more frequently than 
the other strategies. We will further discuss what strategies bother 
people more in section 4.3.1  

Algorithm BFS  

( b ) 

R W S  

( r ) 

WTS 

(w) 

STS 

( s ) 

BCS 

(h) 

I S S 

(i) 

CSS  

( c ) 

HDS 

( d ) 

Median (%) 19.1 8.2 2.2 6.3 0.6 3.5 0.7 0.5 

Max(%) 60.1 25.1 48.4 33.9 61.1 23.2 45.2 63.4 

Table 4: Distribution of Labor using various strategies 

 
Figure 6: Distribution of a user’s frequency of being used 

using various strategies. 

4.3 Impact of Social Characteristics  
We briefly looked at how different social characteristics influence 
the performance of these algorithms. Based on the findings from 
the previous section about social costs, we mainly discuss the 
impact of two characteristics of the social network: user’s out-
degree and tie strength.  

4.3.1 Impact of User’s Out-degree 
Figure 7 displays correlations between a user’s out-degree and 
frequency of being used using various strategies.  
 

 
HDS 

 
BCS 

 
CSS 

 
ISS 

 
BFS 

 
RWS 

 
WTS 

 
STS 

Figure 7: Correlation between a user’s frequency of being 
used and his out-degree using an algorithm 

 

Surprisingly, out-degree is important even when the algorithms 
are not explicitly designed with this in mind. This echoes findings 
regarding the importance of position in networks and node 
centrality in organizations (e.g., Burt [7]). We can see that when 
HDS and BCS are used, the relation looks close to exponential. 
People used most frequently are those highly connected people. 
This is not a surprise, since this is how these two algorithms are 
defined. More importantly, we checked the social status of those 



frequently used people and found that the CEO, CIO, and the 
president of the company are central nodes (or social network 
hubs). This strongly suggests that if a similar algorithm and 
system are not totally automatic, they will not be practical in this 
organization. CSS is designed to decrease the impact of people’s 
out-degree; thus, the correlation in its case is weak.  However, it 
still uses a lot of highly connected users.  
As well, there is an intermediate correlation when using RWS. 
This indicates that random walk is actually not random. As 
Newman [20] pointed out, nodes with high in-degrees have a high 
probability of being picked by other nodes in a random walk in a 
network. We found that there is a correlation between a user’s in-
degree and out-degree in our network, thus explaining the result 
here. The case of BFS is similar to RWS. People with high in-
degrees also have a high chance being searched during the whole 
simulation process. 
An interesting finding is that there seems some correlation even 
when IIS is used. The adjusted r-square is 0.31, p<.001. This 
indicates that the IIS strategy is not independent from the network 
structure. For instance, people have more social connections may 
have more diverse knowledge. This relationship is worth further 
investigating in the future.   
There is no clear correlation when WTS and STS are used.   
 

4.3.2 Impact of Weak Ties 
As described in previous findings, WTS seems more effective 
than STS. It spreads a query faster and bothers fewer people.  To 
explore the reason for this difference, we visualized the 
distribution of these two types of ties into two network views, as 
shown in Figure 8.  From these two views, we can see that weak 
ties are evenly distributed but strong ties form several local 
clusters. Thus, it seems the weak tie strategy propagates queries 
relatively evenly to other parts of the network, and the strong tie 
strategy usually makes local loops when forwarding the messages.  
From this point of view, we can see that strong ties are not useful 
for seeking new information. However, we noted the motivational 
advantages of using strong ties.  Any algorithms using strong ties, 
or thresholds for interpersonal association, may need to consider 
disjoint subgraphs.  
The other interesting question is: since the different strengths of 
ties are not evenly distributed in this social network, what is the 
impact to other information searching algorithms? We further 
discuss this issue in section 4.4.1.  
  

a) Tie<5 b) Tie>=5 

Figure 8: Layered network with various tie strength 
 

4.4 Sensitivity Analysis  
As we discussed earlier, the availability of high degree nodes and 
weak ties are important for searching algorithms we evaluated in 
this paper. However, different networks will have different degree 
distributions:  the Enron data set only presents a single case and it 
is a very dense social network. Even within other social networks, 
the availability of weak ties is not stable and changes frequently 
[12]. To evaluate how these algorithms will accommodate to 
changes of density and tie strength, we carried out two sensitivity 
analyses using modified networks. The first redefined weak ties 
and the other removed users with varying out-degrees. 

4.4.1 Removing Weak Ties 
We first modified the network by removing ties that had less than 
5 messages6. The result network is the one shown in Figure 8b 
(density=0.041, average shortest path=3.435). 
We then ran the same simulation on this modified network with 
the same settings. Because of the changed cut point (or threshold 
for weak ties), note that the operationalization of “weak” tie here 
is not the same as in the previous simulation.  
Table 5 shows the successful rate of this simulation. As can be 
seen, compared to original network, about 23% more queries 
cannot be finished because the network became less connected. 
More interestingly, as can be seen from the adjusted rate, there is 
a clear performance drop for RWS, WTS, STS, and ISS.  This 
indicates that RWS, WTS, STS, and ISS are sensitive to weak ties 
and related network structure changes while BCS, HDS, and CSS 
are less so.   

Algorithm BFS  

(b) 

R W S  

(r) 

WTS 

(w) 

STS 

( s ) ( i )

BCS 

( h ) 

I S S 

 

CSS  

( c ) 

HDS 

( d ) 

Success  
rated (%) 

76.3 44.0 40.0 45.8 73.2 57.6 73.3 72.8 

Adjusted  
Rate(%) 

100 57.6 52.4 60.1 95.9 75.5 96.1 95.5 

Table 5: the success rate of all algorithms in modified network 
 

Furthermore, we can see that performances of HDS, CSS, and 
BCS are also affected.  Figure 9 shows the changes of average 
path length of successful queries in the modified network. 
Compared to little change in BFS strategy, the changes in HDS, 
CSS, and BCS are noticeable.  
 

                                                                 
6 We also tried other thresholds for “cuts”. A threshold of 5 was 

selected because it changed the network enough but still kept 
the network roughly connected. It is also close to the cut point 
that Adamic et al. used in their simulation. 
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Figure 9: Comparison of average path length of successful 

queries 
Above all, results in this modified network suggest that weak ties 
are really important information channels. They should not be 
simply ignored in designing social network based systems or in 
doing email based social network analysis.  

4.4.2 Removing Users with High Out-Degree 
For the second sensitivity analysis, we modified the original 
network by removing the 10 users who had the highest out-
degrees. Most of them are also the most frequently used users in 
the original simulation. In this modified network, the average 
shortest path length became 2.754 and density became 0.076.  
Table 6 shows the success rates in this simulation. Surprisingly, 
we find that the performances of BCS, HDS, and CSS are not 
affected at all. Actually, their relative performances got better 
with regard to the adjusted success rates.  
 

Algorithm BFS 

(b) 

R W S  

( r )   

WTS 

( w ) 

STS 

( s ) 

BCS 

( h ) 

I S S 

( i )

CSS  

( c ) 

HDS 

( d ) 

Succeess  
rated (%) 

81.9 76.4 79.0 73.1 81.7 81.5 81.8 81.5 

Adjusted  
Rate(%) 

100 93.2 96.4 89.3 99.7 99.5 99.9 99.4 

Table 6: the success rate of all algorithms in modified network 
 

However, in Figure 10, which shows the changes in average path 
length of successful queries with this modified network, we can 
see that BFS is the only one that is not clearly affected. BCS, 
HDS, and CCS algorithms are affected much more. This suggests 
their sensitivity to those highly connected nodes. As well, the 
performance rank of these algorithms did not change. 

0

2

4

6

8

10

12

14

b r w s h i c d

complete network
nodes removed

 
Figure 10: Comparison of average path length of successful 

queries 
 

Interestingly, although designed from different perspectives, these 
algorithms still are affected by the change of network 
characteristics. Note these changes result from losing some 
specific ties or people who are particularly useful for the 
strategies used. A good example is the ISS strategy: While its 
design does not consider the effect of weak ties (as in Yu and 
Singh), the removal of weak ties changes its performance 
considerably.  
 

5. SUMMARY 
Searching within social networks has gained more theoretical 
support over the last decade with a better understanding of 
network dynamics and structure. However, compared to 
approaches automatizing the small world problem, we know 
relatively little about searching for expertise in social networks 
Searching for expertise is not only affected by the graph 
characteristics of the network, such as the degree distribution, but 
also social characteristics of the network, such as people’s social 
interactions and expertise. A human social network is not simply 
a graph structure, it also includes different social characteristics.  
We used a simulation on an organization’s email data set, 
compared three families of searching strategies that utilize both 
graph and social characteristics of the derived social network, and 
then explored the algorithms’ tradeoffs and social characteristics. 
Our results indicate these characteristics can affect the searching 
process in important ways:  

 The relative rank of different algorithms changes little when 
examining social costs.  

 The Information Scent Strategy's advantage (IIS), 
surprisingly, is not obviously better than out-degree based 
strategies (BCS and HDS).  IIS's performance is close to the 
Weak Tie Strategy (WTS). Furthermore, we actually found 
that it also tends to use high out-degree nodes more 
frequently than low out-degree nodes   

 As Granovetter suggested, when compared to the Strong Tie 
Strategy (STS), the Weak Tie Strategy (WTS) is better.  
Furthermore, when the weak ties are removed, we also found 
that performance of IIS also decreased considerably. This 
indicates weak ties are likely to be critical for automated or 
augmented expertise finding.  

 Our findings confirmed that out-degree based strategies, such 
as BCS and HDS, in networks like Enron's social network, 
have a clear advantage over other strategies.  However, a 
very few nodes turn out to be very key in affecting the 
performance of such social network searching. . 

 Simulation, in combination with carefully considered data 
and analysis, can be very useful in exploring the complex 
relations among different strategies, social costs, and social 
characteristics of networks. 

As a first-step study, our findings can provide insights for 
designing future social network based information searching 
systems. They also open up some interesting avenues for further 
research. We plan to further look at how the information scent 
strategy (ISS) really works and its correlation with degree 
distributions. Then, based on that work, we will try exploring 
some mixed, dynamic, and learning strategies. We are planning to 
extend our simulation to examine people’s availability and related 
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