
Knowledge Work Artifacts: Kernel Cousins for Free/Open 
Source Software Development 

Margaret Elliott 
Institute for Software Research 

Donald Bren School of Information 
and Computer Sciences 

University of California, Irvine 
Irvine, California 

melliott@ics.uci.edu 

Mark S. Ackerman 
School of Information and 
Department of Electrical 

Engineering and Computer Science. 
University of Michigan  
Ann Arbor, Michigan 
ackerm@umich.edu 

Walt Scacchi 
Institute for Software Research  

Donald Bren School of Information 
and Computer Sciences 

University of California, Irvine 
Irvine, California 

wscacchi@ics.uci.edu 

 
 

 
 

ABSTRACT 
Most empirical studies of peer production have focused on the 
final products of these efforts (such as software in Free/Open 
Source projects), but there are also many other knowledge artifacts 
that improve the effectiveness of the project.  This paper presents a 
study of an intermediate work product, or informalism, used in a 
Free/Open Source Software project, GNUe.  A digest-like artifact 
called the Kernel Cousin (KC) was used extensively in the project.  
These KCs allowed critical coordination and memory, but at the 
cost of considerable effort.  The paper presents two examples of 
the KCs' use in the project as well as an analysis of their benefits 
and costs. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous, H.5.3 Group and Organization Interfaces 

General Terms 
Human factors  

Author Keywords 
Knowledge management, knowledge artifacts, free/open software 
systems, computer-supported cooperative work, CSCW, software 
engineering, online discussions. 

1. INTRODUCTION 
Yochai Benkler in his highly influential paper "Coase's Penguin" 
[4] argued for a new kind of production, which he termed 
commons-based peer production.  He persuasively argued that 
many people could together create knowledge products, enabling 
new forms of production. 

We need to know more about the kinds of new practices that lead 
to knowledge production in information-intensive, peer-production 
work. A great deal of energy has been devoted to detailing and 

studying the finished product of this work.  For example, there are 
numerous studies of wikis, blogs, and more.  However, peer-
production work also entails forms of knowledge artifacts that 
appear to be transitory or even unfinished, yet are necessary to the 
work and lead to higher effectiveness.  

These interstitial artifacts, or “informalisms," [27] are often in 
places that require lightweight coordination and awareness to 
sustain distributed work practices. These would include the 
coordination of work in virtual organizations [30], [21], the 
orientation of new members into organizations, and the social 
maintenance of the organization at a relatively low cost.  Of 
particular interest, these artifacts may also serve as intermediate 
forms of organizational memory [2]. 

This paper presents a study of such a type of artifact in a virtual 
organization, the GNUenterprise.org (GNUe) project.  GNUe's 
goal was to construct an enterprise resource planning (ERP) 
system that was free/open source software (F/OSS).  The 
informalisms are called Kernel Cousins (KCs), a kind of 
community digest for summarizing discussions that are 
hyperlinked to source messages of important communication 
exchanges in a F/OSS project. The GNUe project was one of about 
10 F/OSS projects worldwide that adopted and publicly posted 
KCs as a means for summarizing weekly discussions created and 
evolved by F/OSS developers who communicate through online 
discussions. The GNUe project utilized KCs for over 2 1/2 years, 
producing slightly over one hundred KC summary digests in that 
period. 

This paper begins with a brief literature review, and then discusses 
the nature of F/OSS production and organization.  The KCs are 
then introduced, along with a description of the GNUe project.  
This is followed with two examples of KC use.  The paper then 
discusses the KCs' utility in the GNUe project, highlighting their 
coordination and memory function. 

2. KNOWLEDGE ARTIFACTS AND F/OSS  
In this study, we are interested in new ways of knowledge 
production and use, particularly in new or changing forms of social 
organization. As has often been stated (e.g., [22]), the two - 
knowledge production and use as well as social organization - 
often co-evolve and change together.    

As such there are two bodies of research, found across many 
research literatures, that inform our investigation.  The first 
involves knowledge production and use, and the second considers 

 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GROUP’07, November 4–7, 2007, Sanibel Island, Florida, USA. 
Copyright 2007 ACM  978-1-59593-845-9/07/0011...$5.00. 

 



the particular form of social organization under examination here, 
F/OSS projects. (One might consider F/OSS projects as a case of a 
peer-based production, see Benkler [4].)  We will discuss each 
body of research in turn below. 

The question of knowledge production and use in organizations 
has gone through many cycles of study and investigation.  In its 
most recent incarnation, the question has fallen under the rubric of 
Knowledge Management (KM).  Early KM studies emphasized 
technically-centered studies and often overly rationalistic or 
enthusiastic studies.  Indeed, much of KM was a response to the 
introduction of new technologies (e.g., the Web and networking) 
to organizations.  Later, KM came to examine the social and 
organizational issues underlying knowledge in organizations. After 
initial technical adoption, blind enthusiasm gave way to an 
appreciation of the social issues in adopting and using these new 
technologies (notably, Intranets). (Davenport and Prusak [6] is a 
useful introductory statement of the social issues.) Some KM 
work, such as Wenger [32] and Ackerman and Halverson [1] [2], 
helped foster an appraisal of knowledge management as socially 
situated, inherently embedded in a set of social contexts that 
provided the information with its value and use and also provided 
a social backdrop for how knowledge processes came to be and 
were maintained.  Recent work has almost despaired for the 
difficulties of creating knowledge processes within conflicted or 
ambivalent social structures.  

Throughout, there have been a handful of detailed, field-based 
studies that saw a more complex picture.  These studies painted a 
picture of social considerations driving, constraining, and 
occasionally enabling technical adoption and use.  These studies 
often examined specific artifacts (or families of artifacts) and their 
co-evolving organizational practices.  These studies included 
Orlikowski's study of Lotus Notes and the need for a fit between 
prospective uses and organizational reward systems [25], [24], 
Palen's investigation of shared calendars and the very diverse 
practices centered in very small differences in systems and 
deployments [26], and Dourish et al.'s examination of two 
calendar/information systems and, again, differing possibilities for 
action based in relatively small differences in systems [8].  Of 
particular interest here is Halverson, Erickson, and Ackerman [16], 
where members of a large corporation constructed FAQs for a 
number of reasons, including personal, practical, and 
organizational considerations.  This study showed that very micro-
level co-evolution existed between artifacts (or rather, artifactual 
forms) and organizational, group, and personal practices.  (Also 
see [3].)  

All of these studies and systems, however, were created in fairly 
mainstream, static organizations - mainly large corporations with 
collocated workers working within a common management regime.  
These studies showed how practices and artifacts became 
intertwined, or failed to do so. However, what would be most 
interesting is to understand how new organizational forms might 
require new or additional practices and artifacts.  In turn, we might 
also expect artifacts and practices to engender new organizational 
forms.   

Of particular interest currently are F/OSS communities.  As 
mentioned, these communities are instances of a more broad 
phenomenon, micro-contributory communities [4]. These 
communities are discretionary systems where people are able to 
not only regulate the amount of their contribution, they can also 

contribute very small amounts and still be productive members. 
Furthermore, the efforts of organizing these micro-contributions 
can be made minimal.  

The next section discusses F/OSS communities as micro-
contributory communities that construct software systems. 

3. HOW IS F/OSS DIFFERENT? 
This section discusses a brief historical account of the formation of 
the free software movement.  It also distinguishes between free 
software and open source software and refers to both as free/open 
source software (F/OSS) as is the convention with most F/OSS 
researchers.   

F/OSS development represents a relatively new approach to the 
development of complex software systems [14].  F/OSS 
development generally relies on a global distributed community of 
software developers and users who seek faster, better, and cheaper 
alternatives to closed proprietary systems.  In most F/OSS projects, 
the resulting software system and its associated Web-based 
documents or development artifacts are globally accessible and 
publicly available at little or no direct cost.  The terms and 
conditions of “copyleft” end-user licenses associated with F/OSS 
typically assert the following kinds of digital civil rights or 
"freedoms" to anyone who seeks to employ or use the software [7] 
[33]: 

• Freedom to run the program for any purpose; 

• Freedom to study how the program works and adapt it to their 
needs; 

• Freedom to redistribute copies of the software at will; 

• Freedom to improve the F/OSS program and to distribute the 
altered version; 

• Required distribution of the originating license that specifies 
the freedoms and rights concerning the preceding properties. 

These rights and freedoms stand in marked contrast to those 
offered with the selection, customization, and deployment of 
commercial software.   

F/OSS development projects are iteratively developed, 
incrementally released, reviewed and refined by F/OSS developers 
working as peers in an ongoing agile manner. These methods 
ensure acceptable levels of quality, coherence, and security of 
system-wide software via continuous distributed peer review, 
testing and profiling. F/OSS efforts are hosted within decentralized 
communities of peers ([19] [27] [12] [28] [10] [31]) that are 
interconnected via Web sites and F/OSS repositories. Community 
oriented F/OSS development has given rise to new kinds of 
requirements for community building, community software, and 
community information sharing systems (Web site and interlinked 
communication channels for email, forums, and chat).  

One of the key issues of importance to the free software 
community is its ability to manage software development without a 
top manager monitoring activity and passing judgement on the 
quality and timeliness of the work [27] [12] [28]. There is no lead 
organization or prime contractor that brings the alliance of 
individuals and sponsoring firms as a network virtual organization.  
It is more of an emergent organizational form where participants 
have in a sense discovered each other, and have brought together 
their individual competencies and contributions in a way whereby 
they can be integrated or made to interoperate [5] [20].  Most 



F/OSS projects are managed informally by a small group of core 
maintainers with one or two co-maintainers who make sure things 
are running smoothly.  Since there is no schedule or timeline per 
se, software building, testing, and releases happen sporadically and 
not on a strict schedule.   

Membership flucutates everyday [29] from lurkers to unpaid 
regulars to full-time employees.  In addition, the work is 
accomplished in a setting where many people communicate 
anonymously and never meet face-to-face to organize or manage 
the software contributions offered to the free software project.   
The core maintainers attempt to meet at conferences once or twice 
a year, but the bulk of the work is accomplished without direct 
face-to-face communication with random contributors. Thus, the 
participants often self-organize in a manner more like a 
meritocracy [15] [18] [12]. 

A core maintainer explains the typical method of managing the 
GNUe software assignments as: 

The number one rule in free software is ‘never do timelines 
or roadmaps’.  This is a problem in open source projects.  
We could use a better roadmap, not having one hinders us.  
The features we add come about by need during consulting 
implementations.  We may need some kind of roadmap in 
the future as we expand with more people.  (Derek, face-to-
face interview, August 2002) 

4. RESEARCH SITE 
The research site is a free software development community that 
identifies itself as GNU Enterprise (GNUe) 
(http://www.gnuenterprise.org).  GNUe is a meta-project of the 
GNU Project (http://www.gnu.org).  GNUe is designed to collect 
Enterprise software in one location on the web.  The system design 
for GNUe consists of three items:  

1. A set of tools that provide a development framework for 
enterprise information technology professionals to create or 
customize applications and share them across organizations; 

2. A set of packages written using the set of tools to implement a 
full Enterprise Resource Planning (ERP) system; and 

3. A general community of support and resources for developers 
writing applications using GNUe Tools.  The GNUe website 
advertises it as a “Free Software project with a corps of 
volunteer developers around the world working on GNUe 
projects.  This provides the added benefits of easy 
internationalization of applications.  The project is working to 
provide a worldwide GNUe community, allowing everyone 
who is involved in the project access to talented business 
information technology professionals.” 

GNUe is an international virtual organization for software 
development [5] [21] based in the U.S. and Europe.  This 
organization is centered about the GNUe Web portal and global 
Internet infrastructure that enables remote access and 
collaboration.  Developing the GNUe software occurs through the 
portal, which serves as a global information sharing workplace and 
collaborative software development environment.  Its paid 
participants are sponsored by one or more of twelve companies 
spread across the U.S., New Zealand, South America, and Europe.  
These companies provide salaried personnel, computing resources, 
and infrastructure that support this organization. However, most 
project participants support their participation through other 
means.  In addition, there are also dozens of unpaid volunteers 

who make occasional contributions to the development, review, 
deployment, and ongoing support of this organization, and its 
software products and services.  Finally, there are untold numbers 
of "free riders" who simply download, browse, use, evaluate, 
deploy, or modify the GNUe software with little/no effort to 
contribute back to the GNUe community [23].   

As of end of data collection in 2005, GNUe contributors consisted 
of 6 core developers (2 of these were listed as co-maintainers who 
head the project); 19 active contributors; and 19 inactive 
contributors. The core developers are responsible for major 
portions of the software development process including decisions 
about what software additions and modifications to include in 
software releases. 

GNUe is a community-oriented project, as are many F/OSS 
development efforts [27] [31].  The project started in earnest in 
2000 as the result of the merger of two smaller projects both 
seeking to develop a free software solution for business 
applications. (More information and the history of the GNUe 
project can be found on the GNUe Web site.)  The target audience 
for the GNUe software modules is envisioned as primarily small 
businesses that are underserved by the industry leaders in ERP 
software, perhaps due to the high cost or high prices that can be 
commanded for commercial ERP system installations [28]. Many 
of these target companies might also be in smaller countries that 
lack a major IT industry presence. 

Developers contributing to the ongoing evolution of the GNUe 
software in general provide their own personal computing 
resources.  This is especially true for unpaid volunteer 
contributors, but also true of salaried participants who are paid to 
work on the GNUe software, particularly for their work at home.  
There is no standard or common personal computer configuration 
that is defined as the development platform, other than the 
requirement that a computer can run either Microsoft Windows or 
GNU/Linux operating systems, and that it can access the Internet 
or Web as needed.  Thus, all GNUe community members must 
provide their own way into the project, via personal resource 
subsidies [28]. 

 



5. RESEARCH METHODS 
This study is a part of a larger ongoing research project that 
involves a comparison of F/OSS development techniques in 
various F/OSS communities ([11] [10] [13] [27] [12] [28]).  The 
results presented in this paper are the result of an ongoing 4-year 
ethnography [17] of the free software movement and GNUe.  The 
initial research questions that informed the qualitative analysis 
were: 

1) How do people working in virtual organizations organize 
themselves such that work is completed? 

2) What social processes facilitate open source software 
development? 

3) What techniques are used in open source software 
development that differ from typical software 
development? 

The sources of data for the study include: IRC logs from the GNUe 
research site; threaded email discussion messages archives;  other 
Web-based artifacts associated with the Free Software Foundation 
and OSI, and the GNU project such as Kernel Cousins (summary 
digests of the IRC and mailing lists described in this paper); and 
books and articles on F/OSS.  During the initial phase of research, 
we interpreted books and documents as well as Web site 
descriptions of free and open source software processes.  We 
discovered strong cultural overtones in the readings and began 
searching for a site to conduct a grounded theory study of how 
motivations and cultural beliefs influenced the social processes of 
free software development.  We selected the GNUe site because it 
represented an exemplar of an active F/OSS project and it provided 
archived daily IRC logs and threaded emails in addition to detailed 
documentation of the existing ERP software.  The first author 
spent over 200 hours studying and perusing IRC archives and 
mailing list samples during the open, axial coding and analysis 
phases of the study. 

During the open coding phase of our analysis, the first case study 
presented in [11] was selected as representative of the strong 
influence of cultural beliefs on GNUe software development 
practices.  We discovered that for some GNUe participants, the 
strong belief in the development and use of free software was an 
idealistic motivation for joining and perpetuating the community.  
During this period, we also discovered the KCs Web site and 
began coding and studying the GNUe KCs as a cultural artifact and 
as an integral part of their software development practices. The 
KCs also provided us with categorized summaries of discussions 
on the IRC and email threads.  These indices helped us find the 
examples presented in this paper.   

During the second phase of the study, we performed axial coding 
on various samples of how the strong belief in the development 
and use of free software influenced software development choices 
and practices.  Using grounded theory, we discovered that their 
organizational culture was instrumental in maintaining a free 
software community in which people volunteer hours of effort to 
produce free software [9].  In addition, we explored the influence 
of the Free Software Movement on the ideology of GNUe and its 
work practices.  This research also includes data from email and 
face-to-face interviews with GNUe core maintainers and 
contributors, and observations at Open Source conferences.  For 
example, we exchanged email question-and-answer sessions with 
GNUe core maintainers and conducted a lengthy interview with 

one of the GNUe core maintainers at an Open Source conference 
in 2002.   

In the later stages of the research, we chose to study the KCs in 
depth as an artifact that contributes to the coordination of software 
development in a virtual distributed community.  The main GNUe 
KC writer, Peter Sullivan, also answered several email 
questionnaires giving us detailed explanations of the importance of 
the KCs and of his role as a KC writer.   

6. KERNEL COUSINS – WHAT ARE 
THEY? 
Specifically, this study examines Kernel Cousins (KCs), a type of 
knowledge artifact used as an informalism – a seemingly transitory 
artifact that is actually quite important in creating effective peer 
production --in the GNUe project.  As one might expect from 
F/OSS communities, they were adapted for the GNUe project from 
the efforts of other F/OSS projects.  The KC Web site 
(www.kernel-traffic.org) contains a set of web-based newsletters 
from various free software projects.  The newsletters serve as a 
summary of the weekly activity on the software development 
computer-supported communication (CMC) tools: IRC and 
mailing list archives.  Started in 1999 by Zack Brown, a Linux 
Kernel developer and editor of Linux Today, the Kernel Traffic 
newsletter summarizes the activity on the main Linux kernel 
software development mailing list.  As stated by Zack Brown on 
the current KC Web site, “On it, Linus Torvalds, Alan Cox and a 
lot of other amazing programmers from around the world share 
patches, argue about implementation details, discuss the news of 
the day, and generally make history.”  

By September 1999 the Kernel Traffic web site had expanded to 
include newsletters from other free software projects:  Wine, Hurd, 
Gimp, and Debian.  To distinguish these newsletters from the 
original Linux Kernel one, Zack Brown named these Kernel 
Cousins, and established a standard format for all KCs hosted on 
the www.kernel-traffic.org site.  From 1999 to the present, KCs 
have mainly been initiated and maintained by volunteers.  When a 
KC volunteer author is no longer available and a substitute KC 
writer cannot be found, then the KC goes to “sleep,” listed on the 
newsletter site as a “sleeping cousin”.  However, the archives of 
previous publications persist and are still publicly available for 
browsing, search, or download.  Once someone volunteers to 
continue writing a KC for a specific project again, that sleeping 
cousin becomes active again.   

As of 2005, there were only two active KCs: 1) the Wine project – 
a project to create a Microsoft Windows emulator running on Unix 
platforms, and 2) git – a recently formed project to design and 
develop a new revision control system for use in the Linux Kernel 
project.  Zack Brown wrote the summaries for Linux (which 
consists of as many as 3000 messages per week), until he stepped 
down in November 2005.   

Table 1 shows the active and sleeping KCs that were listed on the 
www.kernel-traffic web site and their status as of late 2006.  



6.1 KC Technical Specifications  
The newsletters are written in XML using a makefile and XSLT 
recipe files along with a few varied scripts made available for 
download from the FSF website.  Using the KC makefile and 
scripts enforces a uniformity to the newsletter formats enabling 
standardized conventions such as a list of all contributors quoted 
in the newsletter with the number of times they were quoted.  All 
KCs have color-coded text to represent authors, exact quotes, 
contributors’ names who have been quoted, and hyperlinks 
pointing back to the originating source of IRC and mailing lists 
which the KC summarizes.  See Figures 1 and 2 for examples. 
Unfortunately, we cannot reproduce the use of color and 
hyperlinks here, we instead substitute boldface type. 

The makefiles are set up with various indices which are described 
below.  We show in the GNUe KC section how these indices help 
people search through the KCs for summaries related to specific 
technical topics.  Each KC is divided into numbered sections with 
titles and where appropriate, the sections link to a list of related 
sections from other KCs.  In this way, KC readers can select a 
topic and read a historical account of all threads related to that 
topic: Topics, Contributors, Index of TOC for each KC, KC 
Archives, and Authors.  The GNUe community used these links to 
group sections of the KCs into topics related to their main 
modules:  Application Server, Forms, Reports, etc.  

7. GNUe KCs 
The KCs were used by GNUe developers during a period of 
November 2001 to September 2006.  One can consider the KC 
newsletters as “reflective” documentation since they are subjective 
essays written by volunteers as a weekly summary of IRC logs and 
mailing list threads.  There is no direct supervision as to the 
content, number of threads to include, or quality of communication 
to include in the weekly KC newsletter.  Thus, the KC entries 
become a cultural artifact reflecting the writer’s personal 
preferences and style of writing.  As a cultural artifact, the KCs 
serve to reify the sensibility of contributing to free software 
projects and to immortalize each contributor’s name in a digital 
artifact.  In addition, when active, people reading the KCs would 
not have to waste inordinate amounts of time reading IRCs.   

During the period from 2000 to 2002, we interviewed one of the 
GNUe co-maintainer and core developer, Derek Neighbors, several 
times.  We asked him general questions about software 
development and management of free software developers.  
Generally, he was enthusiastic about the GNUe project, and was 
eager to correspond with us.  When asked about software 
development management without knowing the developers on a 
personal level, he responded with  

Actually IRC works well for us as a surrogate “office”, people 
are regulars for the most part in their ‘hours’.  So you learn to 
expect person X to be in the office around xxxx (irc) and such.  
It is logged [recorded] unlike an office so other contributors 
can catch up if they miss work. ;). 

The KC served the purpose of summarizing the discussions in this 
surrogate office so that people would not have to waste inordinate 
amounts of time reading IRCs.  In fact, most of the work in GNUe 
takes place on the IRC instead of email or phone calls: 

 

 
 

Table 1 – Statistics on Existing/Sleeping Cousins 
 

Oddly the core really prefers IRC.  We do exchange email a bit, 
but generally only for those that require it or ask for it, as email 
seems to slow us down.  It’s too traditional...Many free 
software folks think IRC is a waste of time as there is ‘goofing 
off’, but honestly I can say its what builds a community.  I 
think a community is necessary to survive...I put our longevity 
[3 years at the time of the interview] solely to the fact that we 
have a community. 

Therefore, recording the GNUe activities in a KC instantiates 
GNUe developers forever and provides a useful chronicle of 
software development activity.  As well, they are “mainly for folks 
who can not devote time to reading IRC logs or can’t access IRC 
real time, but want a high level view of what is going on.... It's the 
only way many can see what’s happening" (Derek). 

The main author of the KCs, Peter Sullivan, also provided us with 
detailed information and personal observations regarding 
experience with the KC in the GNUe project.  While writing the 
KCs, he did receive positive feedback on their usefulness to GNUe 
developers.  For the core developers who were always on the IRC, 
the main advantage was to catch up after being out of town.  For 
others, the KCs served to inform more “fringe” users of activities 
without having to read the full logs.  Peter suggested that now that 
KCs are gone, he noticed that people use email more and IRC less 
of the time.  He believes this either the culture of the GNUe project 
is changing without the KCs to more of a mailing list work 
environment, or the new type of GNUe contributors prefer mailing 
list activity to IRC.   

He indicated that he had to step down as author of GNUe KCs due 
to time constraints caused by a new job (for which he was paid, 
unlike the volunteer work for GNUe).  Writing KCs could take 
anywhere from 5 minutes to confirm no activity to about 2-3 hours 
a day for periods of “heavy” IRC and mailing list activity.  
Interestingly, even though Peter was at will to write as little or as 
much as he wished, he chose to try and cover all activities.  Peter 
was not a GNUe developer; however, he was able to write the KCs 

Project Status #KCs Start 
Date 

End 
Date 

# 
Contributors 
Quoted in 
KCs 

Linux Sleeping 

 

335 1/99 11/0
5 

1929 

Wine Sleeping 

 

315 6/99 7/06 690 

git Sleeping  1 5/05  48 

GNUe Sleeping 125 10/01 9/06 

 

257 

KDE Sleeping 76 3/01 4/04 420 

GIMP Sleeping 44 6/99 5/01 124 

Debian Sleeping 28    

Samba Sleeping 40 11/99 2/01 298 

SLUG 
Pearls 

Sleeping 7 6/00 6/00 58 



as though intimately involved with GNUe's Python code.  He 
claims this familiarity came from “inferring things from the context 
of the discussion, or doing some limited research on the web, or 
even just asking!” 

Next we present the two examples of how KCs in order to ground 
our analysis of them. 

7.1 GNUenterprise KC Examples 
Below, we present two examples of GNUe software development 
work that are summarized in sections of a KC.   The first case 
involves a discussion of whether or not a free software community 
should use non-free software tools to develop GNUe 
documentation.  The second case is more of a technical nature and 
includes a newcomer who engages the GNUe developers with his 
skill in fixing GNUe bugs rather quickly.  This case illustrates the 
dynamics of micro-contributions since the newcomer makes a 
significant contribution in a short period of time without ever 
meeting the core maintainers face to face. There were 169 people 
who were quoted once or twice during the three year period, from 
2001-2004, 64 who were quoted 3 to 26 times, and 4 maintainers 
who were quoted 1835 times in total.  The bulk of the work 
appears to have been performed by the top four maintainers.  
However, dozens of other people, like mc380 in our second 
example, donate smaller amounts of individual time and effort than 
the core maintainers yet make significant contributions as a whole. 
KC Example 1 - Saves time for developers 

Figure 1 shows the KC for the first example.  It illustrates how the 
KC documents a three-day debate which occurred on both mailing 
lists and IRCs in which contributors debated the issue of using 
non-free tools to develop GNUe documentation.  In this example, 
Chillywilly, a frequent contributor, balks at the need to install a 
non-free tool on his computer in order to edit documentation 

associated with a current release.  Even though his colleagues 
attempt to dissuade him from his concerns by suggesting that he 
can use any editor – free or non-free – to read the documentation 
in HTML or other formats, Chillywilly refuses to back down from 
his stance based on a strong belief in free software.  This debate 
lasts three days.  Since the three IRC archives also include 
interactions among contributors on several other issues as well, the 
KC gives interested readers a clear update on an issue that would 
otherwise have required reading lengthy IRC archives.  

The KC has been excerpted for space reasons (see Figure 1 below).  
Note that there are there is a way to link back to other discussions; 
for example, the first line where there is a hyperlink back to KC 
Issue #3. 

Next we show a very small portion of the IRC log for the 
November 14, the first day of the debate. Chillywilly announced 
on the IRC that a fellow collaborator, jamest, had made documents 
with lyx and questions the appropriateness of using lyx since it 
requires the installation of non-free software.  The following IRC 
excerpts have been changed slightly for readability: 
Action:  chillywilly trout whips jamest for 
making lyx docs  

Action:  jcater troutslaps chillywilly for 
troutslapping jamest for making easy to do 
docs 

<Chillywilly> lyx requires non-free software  
<Maniac>  lyx rules 
<Chillywilly>  should that be acceptable for a 
GNU project?  

<Maniac>  chillywilly: did he type it on a 
non-free computer? 

<Mr_You>  heh 
<Chillywilly> Maniac: you make no *** sense 
<Maniac>  :) 
<jcater>  Chillywilly: basically, given the 
time frame we are in, it's either LyX 

4. Using non-free tools for GNUe Documentation 
14 Nov 2001 - 17 Nov 2001 (10 posts) Archive Link: "Can We Please Not Use LyX!?!?" 
People: Daniel Baumann, Michael Brown, Jason Cater, Neil Tiffin, Chad Walstrom, Derek Neighbors 

Further to Issue #3, Section #12, Daniel Baumann questioned the use of LyX for GNUe Documentation. He realised that 
people were having problems with installing docbook, but said "I can build html versions of stuff on my box if this is what 
we have to do." He added "I really shouldn't have to be harping on this issue for a GNU project, but some ppl like to take 
convience over freedom and this should not be tolerated. "  Michael Brown suggested "why not juile LyX with the QT2 
toolkit? According to http://www.devel.lyx.org/guii.php3 , this is pretty close to being complete." Daniel said he had tried 
the QT port before, and was not impressed. Jason Cater said "The upcoming release was originally planned for this past 
weekend.." They had used LyX because they had had problems trying to get docbook to install. Neil Tiffin said "I would much 
rather have docs in any format than no docs at all."  

Daniel reiterated his position, and said " I feel that this issue needs to be ironed out and I apologize for the prior language, 
but I am very frustrated and I feel alienated" . Derek Neighbors said "I think we have always had the stance of 'docbook' is the 
'preferred' format of documentation, however we will take documentation in ANY format. I know I have personally accepted 
text files, texinfo and word documents and converted them to docbook. This motto is because we know its hard to find 
documentors so we wont term them away REGARDLESS of their tool." Daniel proposed "that we use text for now and I will 
volunteer to do docbook or we just switch to something that works better on all systems like say textinfo. What do you guys 
think?"  

There were also full and frank discussions of this issue IRC on 14th, 15th and 16th November. 
 

 

Figure 1:  The Kernel Cousin about using F/OSS tools in the GNUe project 

 
 



documentation with this release, or no 
documentation for a while (until we can get  

some other stinking system in place) 
<jcater>  pick one :) 
<Chillywilly> use docbook then 
 

This discussion continued into November 15 and evolved into a 
discussion of the problems with docbook as well.   
<Maniac> chillywilly: so GNU projects cannot 
use non-GNU software in any portion of their 
project?  

<Chillywilly> no, they shouldn't use non-free 
software 

<Chillywilly> libxforms would reqwuire me to 
add non-free section to sources.list 

<Chillywilly> thus I will not do it and cannot 
read the damn docs 

 
A lengthy and heated discussion ensued on the IRC.  Actually, the 
document was also available in html and text format, so 
Chillywilly could easily have read the documentation.  Other 
developers with a more moderate view about the sole use of free 
software criticized his argument regarding lyx.  Even though they 
agreed that Chillywilly was being unreasonable, several 
participants agreed with his philosophy.  Chillywilly continued to 
argue, however, that the installation of lyx did not match his 
philosophical orientation toward free software development.  
Chillywilly ended this conversation with an exclamation that the 
lyx is "evil" software. 
 
<jamest> however the people that are willing to 
put the effort into the user_guide and 
tech_ref (jcater and myself) 

<jcater> **** it all... read the source code! 
<jamest> are sick of fighting docbook 
 [...] 
<Chillywilly> I casn read that wihout being 
installing evil software  

<Chillywilly> s/being//   
 

The conversation continued with a lengthy discussion of technical 
issues unrelated to the documentation problem.  Meanwhile 
several people sent emails about the documentation fight to the 
distribution list.  This distribution list, as mentioned, is much more 
public.  One of the other GNUe developer's emails included: 
 
I would like to personally apologize to the 
discussion list for the childish email you 
recently received. It stemmed from a 
conversation in IRC that quickly got out of 
hand.  It was never our intention to alienate 
users by using a non-standard documentation 
format such as LyX. 

 
The conversation continued with and without Chillywilly 
regarding lyx usage.  The next day, Chillywilly broached the 
subject of jcater’s response to Chillywilly’s email regarding lyx. 
 
Action: chillywilly sees jcat **** and moaning 
about my mail. 

<Chillywilly> jcater 
<ajmitch> no, it doesn't look like much of a 
**** & moan to me 

<jcater> huh? 
<Chillywilly> irc logs shows otherwise 
 

As might be expected, Chillywilly stuck to his diehard view 
without any interest in switching to non-free software.   

Finally, Chillywilly was convinced to drop the issue for the 
present.  Mr_You appealed to Chillywilly to not let his philosophy 
impede progress, and jcater suggested that constant bickering looks 
bad for the GNUe project.  Chillywilly still insisted that needing to 
install non-free software is a huge impediment to developers, yet 
finally he dropped the issue. 
 <Mr_You> as time goes on, we can move to 
another solution ... 

<Mr_You> I realize it goes against your 
philosophy.. but philosophy shouldn't get in 
the way of progress if it is a temporary 
issue  

<Mr_You> its just a minor temporary issue in 
the huge scheme of things 

<Mr_You> I don't think it threatens our 
integrity 

<Chillywilly> why not just do it in text and 
then mark it up later then everyone csn read 
development docs without the B.S. 

<Mr_You> go for it chilly.. you have your valid 
reasons  

<Chillywilly> Mr_You: the easy way to do that 
would be to run lyx and copy and paste I will 
not install it again until I can run it 
easily with a Free GUI 

<Mr_You> you just haven't been successfull in 
convincing others at this time, I have no 
doubt you may be able to in the future, as 
everyone agrees with you ideally but 
technically its a minor issue 

<Chillywilly> it is not *minor*...it makes us 
look bad  

<jcater> chillywilly: emails like what you sent 
make us look bad 

As mentioned, GNUe readers would have had to read through 
roughly 34 pages of the IRC logs to fully read the discussion 
summarized in approximately 4 paragraphs of a KC.  Of course, 
there would have been many extraneous comments and other 
conversations in that IRC log, which would have made using it 
even more difficult.  One of the standard problems of IRC is 
rereading a log file to catch up. 

What may have been difficult to see in the printed version, the KC 
includes links to the relevant portions of the IRC conversation, so 
interested parties can review those relevant conversation 
fragments.    

7.1.1 Example 2 – GNUe KC index  
Figure 2 shows the KC for the second example.  It illustrates how 
the KC can serve as an index and summary of complex technical 
discussions.  This particular discussion thread becomes linked to a 
larger set of mailing list threads called the Application Server.  In 
this example, a newcomer, mcb30 or Michael Brown, joined the 
IRC and requested CVS (archival) access after pointing out bugs 
which he had fixed during his GNUe installation.  He was a 
consultant who wanted to use the GNUe software to help him run 
his small business in England.  This example reflects the sporadic 
software development that results in substantial code fixes and 
design modifications from an infrequent contributor.  Mcb30 was 
quickly accepted by frequent contributors especially because he 
posted significant bug fixes very rapidly.  However, his name is 
listed in the KC contributor list only seven times so he did not 
contribute to the project on a long time basis.   

The story of the KC here is somewhat complicated; we simplify it 
here for publication purposes.  On November 16, mcb30 got on the 
IRC and asked for information regarding the use of GNUe.  He had 



a conversation on the IRC with reinhard about GNUe and bug 
reporting: 
<mcb30> Is anyone here awake and listening?  
<reinhard> yes 
<mcb30> Excellent.  I'm trying to get a CVS 
copy of GNUe up and running for the 
first(ish) time - do you mind if I ask for a 
few hints? 

<reinhard> shoot away :) 
<reinhard> btw what exactly are you trying to 
run? 

[...] 
<mcb30> OK - what I want to do is get 
*something* running so I can get a feel for 
what there is, what state of development it's 
in etc. - I'd like to contribute but I need 
to know what already exists first! 

<reinhard> ok cool 
<reinhard> let me give you a quick overview 
<mcb30> I have finally (about 5 minutes ago) 
managed to get "setup.py devel" to work 
properly - there are 2 bugs in it 

<mcb30> I've got a patch file - who should I 
send it to?  jcater? 

<reinhard> jcater or jamest 
<mcb30> ok, will do, thanks 
 

Over the course of the next three days, mcb30 made changes to the 
software and tested it.  Each day he sent messages to the mailing 
list and IRC while working offline on the GNUe software bug 
fixes.   Some of what he did is summarized in the KC for 
November 16 through November 19. 

Throughout four days of detailed discussions on the IRC and 
mailing lists, mcb30 contributed code and design ideas related to 
the module.  Finally, after testing these code modifications, he 
suggested to the core contributors on the mailing list that he should 
have “commit” access so that he could submit the code for the next 
release.   He was told that he needed to sign a copyright form with 
the Free Software Foundation (FSF).  Accordingly, mcb30 asked 
for copyright assignment requirements on the IRC and then he was 
directed to the mailing list.  The IRC exchange, with all of its 
noise, includes the following: 
<mcb30> in the midst of all this, can someone 
tell me how I go about doing the necessary 
steps to get CVS access (copyright assignment 
or whatever 

<codewind> well first you need the software i 
presume thats in order :)))))))) 

<jcLunch> mcb30: send me an email to 

jcater@gnue.org and I will reply with the 
first steps of copyright assignment 

<dneighbo> mcb30 you can also send to 
info@gnue.org so have your email and we can 
send you the documents to get started 

<dneighbo> dont let it hold up you doing work 
<dneighbo> we just cant put into the cvs tree 
until we get things squared away 

[...] 
<mcb30> jcater: will send mail to you and 
info@gnue.org 

This continued on the mailing lists.  Mcb30 said in an email: 
 
[...] I can't commit the code until I get CVS 
write access (I'm waiting on the FSF for the 
copyright assignment forms), but thought you 
might like to know that it works. ...  I've 
done a few significant modifications in 
methods/, most of which was pulling some code 
out of {python,glibmodule}_methods.c and into 
methods.c.  I think I've actually ended up 
reducing the total number of lines.  Dynamic 
loading of methods is what I'd like to attack 
next, but I'm not going to start coding 
anything else until I've got the work I've 
already done checked in. 
 
How long does this copyright assignment thing 
take? 
 
Michael 

 
A core developer answered saying that he thought the copyright 
assignment process took a week, but might be speeded up.  This 
was corrected by one of the core developers of the project: 
 
[...] Send via patch file to info@gnue.org.  
Generally we dont give CVS access immediately 
even after assignment is done.  We used to, 
but the problem is sometimes someone will do 
assignment make a patch or two then 
disappear.  ...The FSF Clerk [...] in Boston, 
MA. [...] will draw you up 'physical' papers 
and snail mail them to your address.  Where 
you sign them and return them via snail mail 
and they are put on file.  So generally it 
takes at least 2 weeks.   

 
Mcb30 responded: 

OK, but you do realise that this sort of 
thing creates a *huge* barrier to attracting 
new developers?  If it wasn't for the fact 

10. FSF copyright assignment and CVS access 
16 Nov 2001 - 17 Nov 2001 (6 posts) Archive Link: "[gnue-geas] Method loading" 
People: Michael Brown, Reinhard Müller, Derek Neighbors 

Michael Brown confirmed "I have GEAS working with a mixture of python and glibmodule methods loaded simultaneously." 
He asked how long FSF copyright assignment would take. Reinhard Müller said "it usualy takes more than a week altogether" , 
but he would ask Derek Neighbors to expediate. He would also like to list Michael's company as a project sponser. Derek 
Neighbors asked Michael to e-mail the patches - "Generally we dont give CVS access immediately even after assignment is 
done." Michael said he thought "this sort of thing creates a huge barrier to attracting new developers" . Derek also said copyright 
assignment was normally done by snail mail, but "If we wanted to put a huge rush and you have a fax it could be arranged" . 
Michael supplied his fax number. 
 

Figure 2:  The Kernel Cousin about being able to submit code and having CVS access in GNUe 

 



that I've already written a chunk of code and 
become involved, this type of disincentive 
would probably have been sufficient for me to 
think "too much hassle to join in, may as 
well just come back in six months to see if 
they've got any further writing it yet". 

 
The KC summarizes this entire exchange (which we have 
summarized in our account as well). 

After the copyright discussion on the mailing list, mcb30 
continued to show up sporadically in IRC, but did not continue his 
efforts on GNUe.  Nonetheless, the KC continues to serve as a 
summarization of how to obtain commit access and the copyright 
issues involved in that access.  

8. DISCUSSION 
In the above two examples, one can see that the KCs can lead to 
the rapid assimilation and condensation of sprawling 
conversations.  This had three major benefits for the virtual 
organization.  First, it provided peripheral attention and 
participation to members of GNUe.  People did not have to pay 
attention to details in many discussion messages, as the important 
conversations would be summarized - allowing members to note 
that they existed as well as the gist of the discussion. It became 
even more useful after vacations or other periods away from the 
project.  If necessary or important, members could follow the 
relevant links to recover the entire conversation.  

Second, people who were not central to the effort could maintain a 
low-level interest in the project.  As mentioned, one of the central 
uses of the KCs was to inform managers (of interested companies 
or of the participants themselves) and others who needed to 
monitor but not fully engage the project.  KCs enabled standard 
organizational practices to interoperate with the GNUe work 
practices.  Third, the KCs reinforced important decisions.  They 
were written down, and therefore they became remarkable, as well 
as indexible, navigable, and searchable.  One could easily retrace 
them, making it possible to quickly go through the important 
design decisions on an ongoing basis.  As such, they served as an 
important, informal design rationale or design memory.   

While the KCs were a form of digest, this informalism, then, 
enabled critical peripheral awareness and peripheral participation, 
either directly (through memory or background attending) or 
indirectly (through managers' being able to casually monitor).  In a 
highly distributed, volunteer project, this is critical.  KCs enabled 
more people to attend and engage as they could, thereby enabling 
the participation of a larger group of interested people.   

KCs were not perfect, however.  One of the issues that we found 
most interesting was KCs' dependency on a small number of 
people, and in GNUe on only one person.  Attempts to turn the KC 
production over to others or to distribute it among a small group 
were not successful, revealing several important issues.  The KCs 
were time-intensive, and they required someone who was 
technically strong. One had to understand deeply the technical 
issues involved.  In most F/OSS projects, people with that 
capability are cutting code, as this is more socially and 
vocationally central.  Therefore, the KCs required someone who 
was technically adept, had time, and was relatively unconcerned 
about the social centrality of code production. This is rare, and 
hard to cultivate.  This may also be why the KCs, while serving as 
a form of design rationale, were not further distilled into formal 
documentation. 

As well, it is quite possible that KCs as well are important at a 
specific time in a F/OSS (or other) project.  A strong possibility is 
that KCs are best used when the project is being intensively 
developed.  There is great coordination and communication need, 
and it is hard to stay caught up.  Phone conferences are one way 
that handles the need for constant coordination, but KCs provide a 
more durable and easily retrieved/searched memory.  KCs are also 
lighter-weight than phone conferences for casual participants, as 
they do not require the synchronous participation of phone 
conversation; they allow background attending and peripheral 
awareness.  When the project is more stable or slower-paced, KCs 
may be less valuable.  We cannot know this with certainty, 
however, without further study. 

9. CONCLUSIONS 
The use of KCs in the GNUe project illustrates use of seemingly 
transitory knowledge artifacts as informalisms to enhance 
coordination, help social and project maintenance, and maintain a 
shared understanding and identity within a complex, distributed 
project.  GNUe is a classic F/OSS project that maintained an 
identity centered in its code production.  However, we could 
expect that other virtual organizations would require similar 
artifacts, able to focus the organizational participants on the 
important activities and their histories in a timely and efficient 
manner.  These artifacts might have little value or use after these 
activities end. Nonetheless, their importance in organizational 
effectiveness, and especially in peer production, should not be 
underestimated.  Indeed, the GNUe KCs were useful and important 
in the ongoing work of the project in a manner that reiterated the 
value of collaboration through peer production.   

Obviously, if the KCs were important, why were they not 
continued?  Although we made a significant effort to determine 
this, the answer remains murky.  We believe that a fair amount of 
the answer lies in the unique characteristics of the main author of 
the KCs, Peter Sullivan in GNUe, or Zack Brown in Linux Kernel.  
Peter (and Zack) was technically skilled, was able to summarize 
well, was willing to write, personable, had enough time, and was 
able to engage in deeply technical discussions of source code 
functionality or structure without engaging in source code 
development.  These are rare skills in F/OSS projects where 
participants primarily contribute to the project on their own time.  
(One could imagine that they would be less rare in organizational 
projects; the central vocational anchor in F/OSS projects is 
technical expertise.)  Nonetheless, we could envision several 
ameliorations.  Training, in places like Information or Informatics 
schools, may enable these conjoined skills to be more readily 
available.  Additionally, one could imagine that if one of the major 
issues with KCs or other similar forms of knowledge artifacts is 
sheer time, technical augmentations to facilitate distillation [2] 
might ease the problem.  Production of the KCs required laborious 
cutting and pasting, as well as linking, by hand.  Clearly, this is a 
place where relatively straightforward tools would help.  One 
could even imagine distributed tools that allowed project 
participants to mark important sections of IRC or email 
discussions, expediting KC authoring.   

10. ACKNOWLEDGMENTS 
The research described in this report is supported by grants 
#0083075, #0205679, #0205724, #0350754, #0534771, and 
0325347 from the U.S. National Science Foundation. No 
endorsement implied. Les Gasser at UIUC; John Noll at Santa 



Clara University; and, Chris Jensen and others at the UCI Institute 
for Software Research are collaborators on the research described 
here.  

11. REFERENCES 
[1] Ackerman, M. S. and Halverson, C. Considering an 

Organization's Memory. In Proceedings of the ACM 
Conference on Computer Supported Cooperative Work 
(CSCW'98) (1998), 39-48.  

[2] Ackerman, M. S. and Halverson, C. Organizational Memory: 
Processes, Boundary Objects, and Trajectories. Computer 
Supported Cooperative Work:  The Journal of Collaborative 
Computing, 13, 2 (2004), 155-189. 

[3] Ackerman, M. S., Halverson, C. A., Erickson, T. and Kellogg, 
W. A. (ed.) Resources, Co-Evolution, and Artifacts:  Theory 
in CSCW. Springer, New York, 2007. 

[4] Benkler, Y. Coase's Penguin, or Linux and the Nature of the 
Firm. Yale Law Journal, 112(2002), 369+. 

[5] Crowston, K. and Scozzi, B. Open Source Software Projects 
as Virtual Organizations. IEE Proceedings--Software, 149, 1 
(2002), 3-17. 

[6] Davenport, T. H. and Prusak, L. Working Knowledge: How 
Organizations Manage What They Know. Harvard Business 
School Press, Boston, 1998. 

[7] DiBona, C., Ockman, S. and Stone, M. Open Sources: Voices 
from the Open Source Revolution. O’Reilly Media, 
Sebastopol, CA, 1999. 

[8] Dourish, P., Bellotti, V., Mackay, W. and Ma, C.-Y. 
Information and context: lessons from the study of two shared 
information systems. In Proceedings of the ACM Conference 
on Organizational Computing (1993), 42-51.  

[9] Elliott, M. The Virtual Organizational Culture of a Free 
Software Development Community. Paper presented at the 3rd 
Workshop on Open Source Software, Portland, Oregon, 2003.  

[10] Elliott, M. and Scacchi, W. Free Software Developers as an 
Occupational Community: Resolving Conflicts and Fostering 
Collaboration. In Proceedings of the ACM Conference on 
Supporting Group Work (Group 2003) (2003), 21-30.  

[11] Elliott, M. and Scacchi, W. Free Software:  A Case Study of 
Software Development in a Virtual Organizational Culture. 
Technical Report No. UCI-ISR-03-6, Institute for Software 
Research, University of California, Irvine, 2003.  

[12] Elliott, M. and Scacchi, W. Free Software Development: 
Cooperation and Conflict in a Virtual Organizational Culture. 
In S. Koch (ed.) Free/Open Source Software Development. 
Idea Publishing, New York, 2005, 152-172. 

[13] Elliott, M. and Scacchi, W. Mobilization of Software 
Developers:  The Free Software Movement. Information 
Technology and People, in press. 

[14] Feller, J. and Fitzgerald, B. Understanding Open Source 
Software Development. Addison-Wesley, New York, 2002. 

[15] Fielding, R. T. Shared Leadership in the Apache Project. 
Communications of the ACM, 42, 4 (1999), 42-43. 

[16] Halverson, C. A., Erickson, T. and Ackerman, M. S. 
Organizational issues: Behind the help desk: Evolution of a 
knowledge management system in a large organization. In 

Proceedings of the ACM Conference on Computer Supported 
Cooperative Work (2004), 304-313.  

[17] Hine, C. Virtual Ethnography. Sage Publications, Newbury 
Park, CA, 2000. 

[18] Jensen, C. and Scacchi, W. Role Migration and Advancement 
Processes in OSSD Projects: A Comparative Case Study. In 
Proceedings of the International Conference on Software 
Engineering (ICSE) (2007). 

[19] Kogut, B. and Metiu, A. Open Source Software Development 
and Distributed Innovation. Oxford Review of Economic 
Policy, 17, 2 (2001), 248-264. 

[20] Ljungberg, J. Open Source Movements as a Model for 
Organizing. European Journal of Information Systems, 9, 4 
(2000), 208-216. 

[21] Noll, J. and Scacchi, W. Supporting Software Development in 
Virtual Enterprises. J. Digital Information, 1, 4 (1999). 

[22] O’Day, V. L., Bobrow, D. G. and Shirley, M. The Social-
Technical Design Circle. In Proceedings of the ACM 
Conference on Computer-Supported Cooperative Work 
(CSCW'96) (1996), 160-169.  

[23] Olson, M. The Logic of Collective Action. Harvard University 
Press, Cambridge, 1971. 

[24] Orlikowski, W. J. The Duality of Technology:  Rethinking the 
Concept of Technology in Organizations. Organization 
Science, 3, 3 (1992), 398-427. 

[25] Orlikowski, W. J. Learning from Notes:  Organizational 
Issues in Groupware Implementation. In Proceedings of the 
Computer Supported Cooperative Work (1992), 362-369.  

[26] Palen, L. Social, individual and technological issues for 
groupware calendar systems. In Proceedings of the ACM 
Conference on Human Factors in Computing Systems (1999), 
17-24.  

[27] Scacchi, W. Understanding the Requirements for Developing 
Open Source Software Systems. IEE Proceedings--Software, 
149, 1 (2002), 24-39. 

[28] Scacchi, W. Understanding the Development of Free E-
Commerce/E-Business Software: A Resource-Based View. In 
S. K. Sowe, I. Stamelos and I. Samoladas (ed.) Emerging 
Free/Open Source Software Practices. IDEA Group 
Publishing, Hershey, PA, 2007, 170-190. 

[29] Scacchi, W. and Jensen, C. Guiding the Discovery of Open 
Source Software Processes with a Reference Model. In 
Proceedings of the Third IFIP International Conference on 
Open Source Systems (2007), 265-270.  

[30] Schmidt, K. and Simone, C. Coordination Mechanisms:  
Towards a Conceptual Foundation of CSCW Systems Design. 
Computer Supported Cooperative Work Journal, 5, 2/3 
(1996), 155-200. 

[31] Sharma, S., Sugumaran, V. and Rajagopalan, B. A 
Framework for Creating Hybrid Open-Source Software 
Communities. Information Systems Journal, 12, 1 (2002), 7-
25. 

[32] Wenger, E. Communities of practice: learning, meaning, and 
identity. Cambridge University Press, New York, 1998. 

[33] Williams, S. Free as in Freedom: Richard Stallman's 
Crusade for Free Software. O'Reilly Books, Sebastopol, CA, 
2002. 

 
 

 


